

High-resolution data

Model predictions

Distributed stormwater collection for groundwater recharge can be effective over a range of climate scenarios

Managed aquifer recharge (MAR) introduces surface water underground to increase groundwater supply

Hillslope runoff as a source for MAR

Runoff as a source for MAR

Low-impact development (LID) Regional spreading grounds

Runoff as a source for MAR

Low-impact development (LID) Distributed stormwater collection (DSC-MAR)

Regional spreading grounds

~ 1 af/yr at each site

(e.g., Newcomer et al. 2014)

100 - 1,000 af/yr

10,000+ af/yr at each site

(e.g., Orange County Water District)

Pajaro Valley Groundwater Basin (PVGB)

Overdraft: 10,000-15,000 af/yr

DSC-MAR field site: Measured precipitation, runoff, sediment transport for 6 years

Precipitation—Runoff Modeling System (PRMS)

Precipitation—Runoff Modeling System (PRMS)

PVGB model discretization

Model cells delineated topographically

25–250 acres (0.1–1 km²)

Flow routed from one cell to the next

Input climate data to drive model?

Precipitation projections for California 2070–2099 relative to 1951–1980

modified from Flint and Flint 2014

Future uncertainty:

Increase or decrease total rainfall?

Input climate data to drive model?

Precipitation projections for California 2070–2099 relative to 1951–1980

modified from Flint and Flint 2014

Future uncertainty:

- Increase or decrease total rainfall?
- Distribution of rainfall in space/time?

We created model climate scenarios using historical data

Model results:

In the dry scenario, >20,000 ac-ft/yr of hillslope runoff is generated in the PVGB (much more in wetter years).

Field results:

The project exceeded its goal in one of four drought years

Field + model results:

Enough runoff is generated to support DSC-MAR even during dry times

Field + model results:

DSC-MAR can be an effective water management strategy over a wide range of precipitation regimes

Precipitation projections for California 2070–2099 relative to 1951–1980

modified from Flint and Flint 2014

Field + model results:

DSC-MAR can be an effective water management strategy over a wide range of precipitation regimes

Precipitation projections for California 2070–2099 relative to 1951–1980

What about the distribution of rainfall in time?

What about the distribution of rainfall in time?

Field results: Hourly precipitation characteristics matter

Field results: Significant results from hourly data are obscured in daily data

Reconciling model and field results:

Model results accurately represent general range, but not year-to-year specifics

There is limited data available to drive models with time steps <1 day

There is limited data available to drive models with time steps <1 day

Local, high-resolution field data is critical to represent site-specific conditions...

because we may not be able to predict changes in rainfall distribution

Precipitation projections for California 2070–2099 relative to 1951–1980

field: sub-hourly scale processes dominate

model: daily time step, annual predictions

Field challenges: Hillslope runoff transports and deposits fine-grained sediment

>900 tons in 3 yr!

Insights from regional data:

- Infiltration basin especially coarse
- Drainage area comparatively finer-grained

Insights from regional data:

- Infiltration basin especially coarse
- Drainage area comparatively finer-grained

Regional analyses, models, and field validation play a crucial role in field project development and maintenance

Modeling and field results demonstrate effectiveness of DSC-MAR

Even during times of low total rainfall

Great value in validating site design with field measurements and regional models

Not just what is working well, but why, and insights into future project design

Field data and models each have limitations, using both can give a more complete picture

Field data: high resolution (space and time)

Regional models: put field results into context

Ongoing work in the PVGB

Thank you!

sbegansk@ucsc.edu

