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Problem: Geology controls recharge rates/extent ...

... but regional-scale models are not detailed enough to include these details.

Conceptualization Issue

Geologic ... but is often poorly
heterogeneity controls understood/represented in
recharge ... regional coarse-resolution models
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Physically-based, complex model explicitly simulates recharge processes,

Solution: & provides reasonable ranges of recharge




Objective:

Exploit preferential pathways (i.e., connected network of sand & gravel hydrofacies)

for accelerated, high-volume recharge.

Typical Alluvial Aquifer System

Diffuse Recharge Through
Low-K Hydrofacies
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Focused, Rapid Recharge Through
Interconnected High-K Pathways
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Typical GW Model

Recharge in Most Models:
Integrated in Space & Time

Is Recharge Accurately Represented?
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Highly-Detailed Representation of Geologic Heterogeneity
e Stochastic geostatistical model (TPROGS) informed by ~1200 well logs
* 4 hydrofacies Gravel, S2rc, Muddy Sand, Mud
e ~10 millipn cells (200m X 200m X 1m)
Managed Aquifer Recharge Simulations
e 3D, variably-saturated, integrated flow model
e Parallelized on 120-180 supercomputer cores (~6000—17,000 CPU hours/run)
* 5recharge sites
e 180-day simulations
.~ ¢ 10-cm ponded water over 1420 acres

/" Goal:
,/ e Sophisticated representation of physics & geology (1) simulates realistic
50X vertical exaggeration |+~ recharge rates & (2) identifies potential for accelerated recharge.




Sites are chosen to represent wide range of
geologic heterogeneity

Fines-iimeqated- et g Y : Sy Hydrofacies:
e, Sitesie" ) S el | : Gravel Sand
: : 2 Muddy Sand Mud

Sites 1-3: Dominated by
Interconnected Sand & Gravels
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Sites 4 & 5: Dominated by
Muddy Sand and Mud




(1) Isolate pressure and change-in-storage response for each simulation.
(2) Isolate responses by to hydrofacies.

Model Post-Processing

Main Benefits of Recharge:
1. Increase in Pressure (i.e., Piezometric Head)

2. Increase in Groundwater Storage
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Model Results

Large Range of Responses Across Sites

Pressure Perturbation
Area of Influence

Domain-Wide Pressure and Change-in-Storage

3.5

=% 10
site 1
site 2
site 3 P 7
site 4 -~
site 5 '\,
&

300X greater
Area of Influence
of Pressure Perturbation

' / for Site 1 than for Site5 |-—

1400

/ 1200}

1000

600

cumulative change in storage (inches)

0 20 40 60 80 100 120 140

elapsed time (days)

Response for Each MAR Simulation

Cumulative Change in
Groundwater Storage

800 |

65X greater
/ Cumulative Recharge Volume

400

200f

L1Site5 |

site 1 ,,r’"’j
site 2 o
-
site 3 -
site 4 5'\\9/"
site 5 P
/ -

for Site 1 than for Site5 | _

Site 5 |

20 40 60 80 100 120 140 160 180
elapsed time (days)

Gravel Sar
Muddy Sand Mud

a#*Predominantly
Mud



Domain-Wide Pressure and Change-in-Storage

Model Results Response for Each MAR Simulation
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Large Range of Responses Across Sites

Average Recharge Rate
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Domain-Wide Pressure Response
for Each MAR Simulation

Model Results

Gravel Sand
Muddy Sand Mud

Pressure Perturbation Animations (0—180 days)
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Pressure & Change-in-Storage Response
Above & Below Initial Water Table

Model Results

Majority of change-in-storage
occurs in the unsaturated zone
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Pressure & Change-in-Storage Response
Above & Below Initial Water Table

Model Results

Majority of pressure response
occurs in the semi-confined aquifer system
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Pressure & Change-in-Storage Response

Model Results Above & Below Initial Water Table

10t ; ; .
= : :
@ @ : Site 2 Detail
%" S
E cC — Iz pressure anomaly propagation (m)
= O o o5 107 40,000
(Vo] > O 25 ,
1 t 4= 2 i Y
£ o 0 =28
] o ; c =2
() O ==
sz e
& o i
< v i3
o (aln) L
1
09 site 2
g o F
- o E 08+ E
8- c |"_° 3% 07t .
n O « 22 gl 1
Q + Q 3z
o == =% :
O () 5= 0&F E ITH Sarthiar {m)
(<) Q=2 5= Wt o
S O 5 ; 0.4+ E o . 65904 THY East ng (m)
: . ; 3% GG
A s o 27 03p 1
“d ) s 02t .
a. (e} £
oot _
D 1 1 1

1 1 1 1 1
o 20 40 g0 a0 100 120 140 160 180
elapsed time (days)




Change-in-Storage Response

Model Results

in Fine- and Coarse-Texture Hydrofacies

Cumulative
Proportion of Storage Accommodated
by Fine Hydrofacies
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Change-in-Storage Response
in Fine- and Coarse-Texture Hydrofacies

Model Results

Proportion of Storage Accommodated
by Fine Hydrofacies

... At Each Time Step
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Large variation in recharge rates
pressure perturbation

pressure perturbation below water table

recharge volume unsaturated zone

Fine-textured hydrofacies (i.e., mud & muddy sand) accommodate a
substantial proportion of recharge volume, especially during late time.



Questions?
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