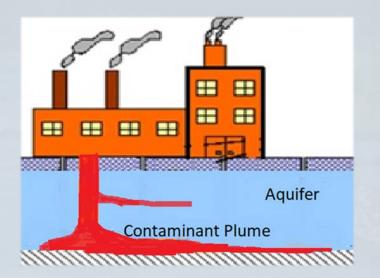
Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Dr. John Freim OnMaterials, LLC Escondido, CA

Groundwater Resources Association of California

EST: 1992

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**


Chlorinated Solvent Contamination - Background

Dry cleaners

- PCE used as cleaning agent
- Many dry cleaning facilities had leaks, spills, improper disposal

Former and current industrial facilities

- PCE, TCE, VC, 1,1,1-TCA, etc.
- Degreasing, cleaning, surface preparation
- Remanufacturing, metalworking, etc.
- Electronics manufacturing
- Aerospace / defense installations
 - Cleaning agents for planes, weapons, etc.
 - PCE, TCE, VC, 1,1,1-TCA, etc.

Primary contaminants and daughter products have varying levels of toxicity.

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Chlorinated Solvent Contamination - Remedial Options

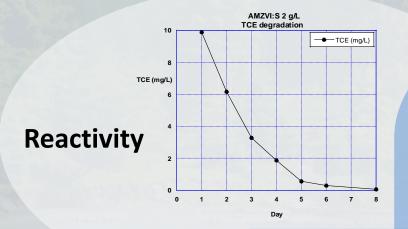
- CExempleation

Source: Geo-Solutions

Source: OnMaterials

Insitu Bioremediation Pilot Study in Progress Treated Air Martin. Aboveground Treatment System Source: Terra Systems se Zone Source Source: NRC

- Solitiving diation - Soil Vapone Exital Consideration

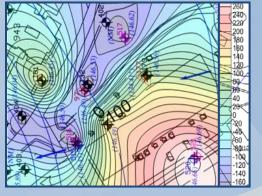

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

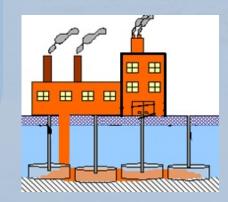
Why use Zero Valent Iron?

- If used properly, ZVI can address chlorinated contamination through either chemical reduction and/or enhanced bioremediation pathways.
- It is possible to use ZVI in a manner which satisfies all of the requirements for successful *in situ* remediation...
- In-Situ remediation technologies are attractive because they don't involve excavation or permanent system installation (O&M costs)

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

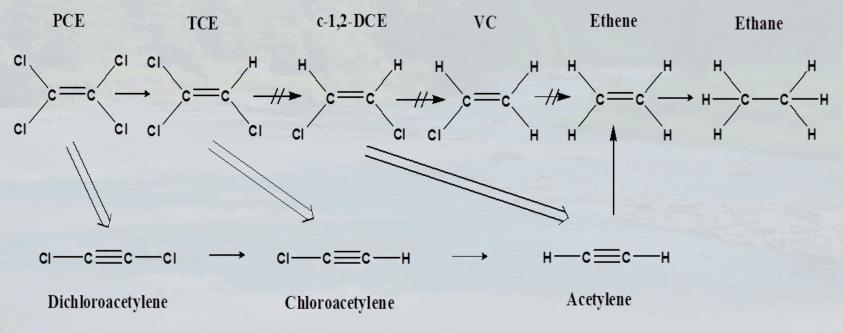
Requirements for Successful In-Situ Remediation





Ease of Use

Success!

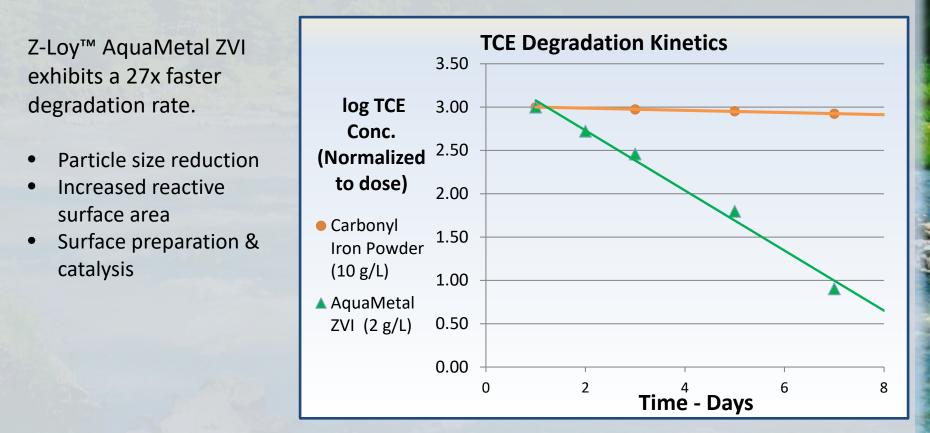


Distribution

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Chemical Reduction (Abiotic): Zero Valent Iron and TCE

 $4Fe^{0} + C_{2}HCI_{3} + 5 H^{+} \rightarrow 4 Fe^{+2} + C_{2}H_{6} + 3 CI^{-}$


Reaction pathway can bypass toxic daughter products

Optimization of ZVI Technology for *In-Situ* Remediation of Chlorinated Hydrocarbons

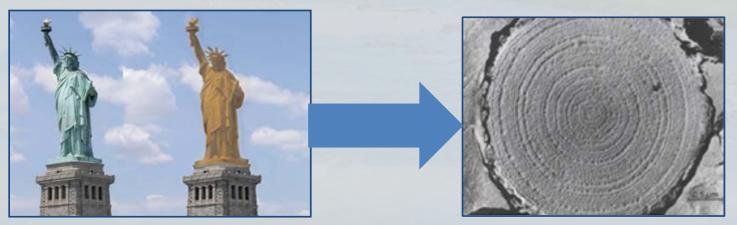
Reactivity: Commodity Iron Vs. Engineered Iron

Comparison of the following against 36 mg/L TCE:

- **10 g/L** Carbonyl iron powder (commodity product)
- 2 g/L Z-Loy[™] AquaMetal ZVI (engineered product)

Optimization of ZVI Technology for In-Situ Remediation of Chlorinated Hydrocarbons

ZVI – Passivity and the Importance of Optimized Material


Reaction with water Fe(s) + 2 H₂O(I) \rightarrow Fe(OH)₂(s) + H₂(aq) 3 $Fe(OH)_2(s) \rightarrow Fe_3O_4(s) + H_2(aq) + 2H_2O(l) \rightarrow Passivating oxide/ hydroxide$

Reaction with DO

2 Fe(s) + 1.5 $O_2(aq) \rightarrow Fe_2O_3(s) \rightarrow Passivating oxide$

Reaction with Carbonate

 $Fe(s) + 2 H_2O(I) + CO_3^{-2}(aq) \rightarrow FeCO_3(s) + H_2(g) + 2 OH^{-}(aq) \rightarrow Passivating carbonate$

Reaction with Sulfate 4 Fe(s) + SO₄⁻²(aq) + 4 H₂O(l) \rightarrow FeS (s) + 3 Fe(OH)₂(s) + 2 OH⁻(aq) \rightarrow Reactive iron sulfide

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Case Study – Abiotic Dechlorination at Active Mfg. Facility

- Prior bioremediation efforts / cis-1,2 DCE was primary remaining contaminant
- 2 phase treatment No access to source under active building
- 1st phase was 26 DPT points (Z-Loy[™] MicroMetal and pH modifier)
- 2nd phase was 32 DPT points (Z-Loy[™] MicroMetal and pH modifier)
- No daughter product formation means abiotic system

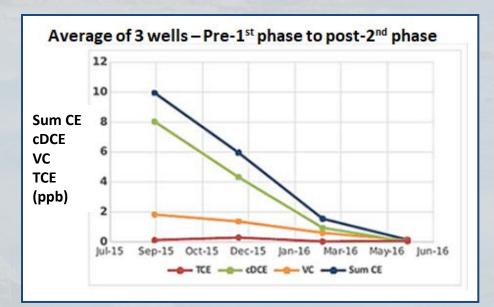
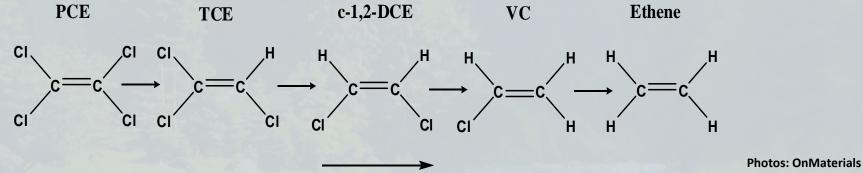



Photo: OnMaterials

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**


Case Study – Abiotic Dechlorination at Active Mfg. Facility

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Metal-Assisted Bioremediation: Biotic Degradation

Hydrogenolysis: 2 e⁻

Co-application of:

Microbes

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

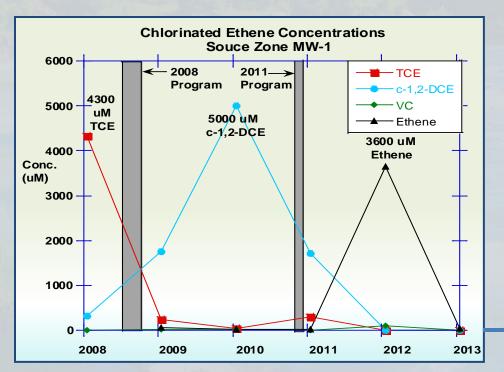
Case Study: Metal-Assisted Bioremediation

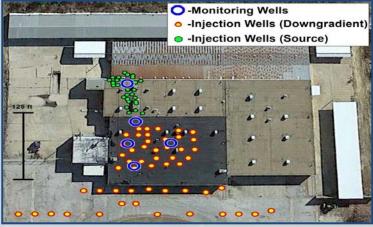
Source: Texas industrial site had a degreaser which ruptured spilling 100+ gal of TCE. Residual TCE DNAPL with little natural attenuation.

Approach: Amendments were applied via screened wells at 5-20 psi.

Amendments:

- Z-Loy[™] MicroMetal
- EVO
- pH modifier, nutrients
- Dechlorinating microbes


Photos: OnMaterials



Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

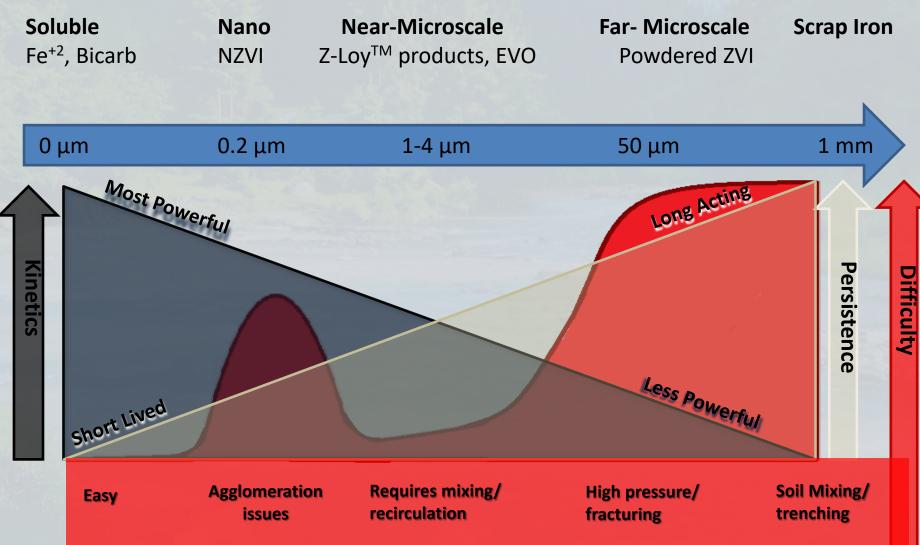
Case Study: Metal-Assisted Bioremediation

Implementation: Injection was done in two phases based on baseline and monitoring data.

Photos: OnMaterials

Results: 5 year monitoring data tells an interesting story. A large spike in ethene shows complete biotic degradation after 2011 injection event

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**


Examples of Commercial Products

Zero Valent Iron - #	igational Methadgelogy
SolubleNZVI	Creened Wells
 Z-LoyTM Products OnMaterials 	1-3 μm
 Commodity Iron Several vendors 	3-10 μm
 Commodity Iron Several vendors 	44-100 μm
Cast / Scrap Iron	1 mm Trenching / Misc. Soil Mixing

Optimization of ZVI Technology for *In-Situ* Remediation of Chlorinated Contaminants

Characteristics as a Function of Particle Size

144

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Characteristics as a Function of Particle Size

Small particle size

- Better suspension aids in injectability and distribution
- Uniformity can be helped by adding dispersants

Large particle size

- Difficult to suspend
- Thickening with gaur, etc.
- Aggressive mixing must be done

40 micron ZVI in water

2-3 micron Z-Loy[™] AquaMetal ZVI in water

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Dosing Considerations

Chemical	Physical
ORP	Porosity
рН	Groundwater flow/flux
Sulfate, DO, nitrate	Saturation / Pore replacement
Contaminant & Concentration	Geology/ Lithology

- Soluble and small particle size amendments are often dosed in terms of *in-situ* concentration between 4 g/L 25 g/L.
- Water-like characteristics suggest that material will occupy pore space and displace / mix with groundwater when applied at low pressure.
- Large materials (40+ micron) are often dosed in terms of soil mass basis between 0.5%-2.0%. This is usually 5x – 10x more than small particle size.
- Higher pressures required may create fractures, therefore displacing soil/groundwater. Particle size is larger than available pore spaces.

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Dosing Considerations

• Dosing for commodity and engineered iron products differs because of subsurface distribution and reactivity.



Photo: OnMaterials

Low pressure sandbox demo

Depiction of subsurface fractures

Photo: ITRC 2011

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Optimization of Technology

- ZVI has been used since the 1990's for remedial applications
- Materials and methods exist which take a 'good' technology and make it 'great'
- Reductive dechlorination can be done with screened wells and with a small footprint using low pressure – Much easier at active facilities, neighborhoods, etc. where "low key" installation is a must.
- Enhanced reactivity means fast results

Photos: OnMaterials

Optimization of ZVI Technology for *In-Situ* **Remediation of Chlorinated Contaminants**

Thank You for Your Time!

We offer our Z-LoyTM products as well as:

- Remedial design and support
- Injection services
- Custom mixing, material handling and injection equipment
- All personnel hold at least M.S. in Chem. or Env. Engineering discipline
- Over 15 years of successful results and expertise in the industry

