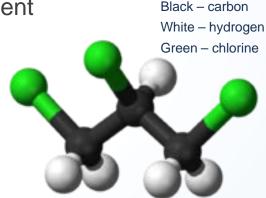


Occurrence, Fate, and Remediation of the Emerging Contaminant 1,2,3-Trichloropropane

Srinivasa Varadhan, Engineer, Sacramento Eric Suchomel, Principal, San Francisco

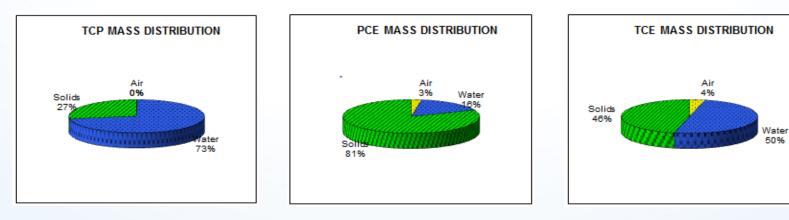

Why is 1,2,3-Trichloropropane an Emerging Concern for Groundwater?

Man-made compound

Geosyntec[▶]

consultants

- Formerly used as a chemical solvent and extraction agent
- Chemical intermediate in the production of:
 - Other chemical intermediates
 - Agricultural fumigants
 - Specialty polymers and sealants
- Typically found at:


- Ag-chem facilities, chemical manufacturing/storage facilities, military bases
- Supply wells, particular those in agricultural areas (non-point sources)
- Classified as a likely or potential carcinogen to humans
 - EPA, US Health & Human Services, American Conference of Governmental Industrial Hygienists, NIOSH
 - Classified as a carcinogen by the State of California

Why is 1,2,3-Trichloropropane an Emerging Concern for Groundwater?

	Property	1,2,3-TCP	1,1,1-TCA	TCE	1,2-DCA	Notes
Low Vapor Pressure & Henry's Constant	Vapor Pressure	3.1	133.4	131.5	387	Torr (mm Hg) @ 25º C
	Henry's Constant	2.3 - 3.4	167	93.7	11	x 10 ⁻⁴ atm m ³ mole ⁻¹ @ 25º C
Low Koc	Solubility	1.75	1.3	1.1	8.61	g/L @ 20º C
	Koc	51	152	126		mL/g

Geosyntec[▶]

consultants

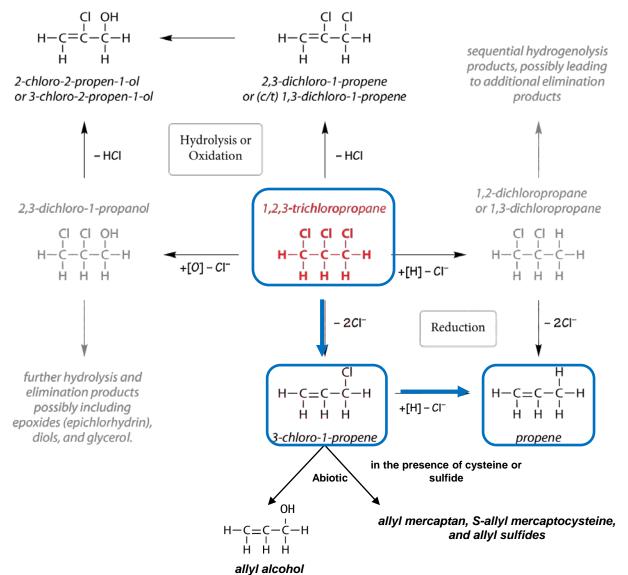
- Little retardation may form long, straight groundwater plumes
- Compared to chlorinated ethenes and chlorinated ethanes, TCP is less likely to sorb to solid material or partition into the vapor phase.

Current Regulatory Climate

Federal	 USEPA tap water RSL is 0.00075 µg/L Listed on 2015 Draft Contaminant Candidate List 4 (CCL4) 	STATES - DONEOP
California	 0.0007 μg/L Public Health Goal (est. 2009) 0.005 μg/L MCL (adopted 18 July 2017) 	OEHHA OEHHA Dente of Callored Distance of Callored
Hawaii	• State MCL of 0.6 μg/L (est. 2011)	DET TATENT OF THE
Minnesota:	 Health Risk Limits (HRL) (est. 2013): 0.003 μg/L Cancer HRL 0.7 μg/L Non-Cancer HRL 	MINNESOTA MIDH DEPARTMENT OF HEALTH
New Jersey	• 0.03 µg/L Suggested MCL (est. 2009)	TOTOLOGICAL STREET
Other States?	Coming Soon?	

Groundwater Remediation

- Groundwater ex situ treatment feasible but potentially costly
 - GAC effective, but long residence time required
 - Advanced oxidation processes may also be effective
- In situ remediation is most effective but not widely tested
 - Potentially costly for dilute plumes
 - Includes:
 - Biological Reduction (ISBR)
 - Chemical Oxidation (ISCO)
 - Chemical Reduction via Zero Valent Metals (ISCR)



consultants

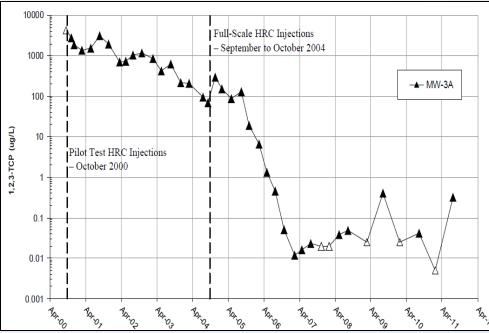
1,2,3-TCP Degradation Pathway

Note: Degradation products transient in water and rarely observed

Primary pathway observed for ISBR and ISCR

Geosyntec.com

- Since 2000 Biostimulation at numerous sites; mixed results and unknown/unclear degradation mechanism and pathway
- <u>~2010</u> Dihaloelimination of chlorinated propanes by Dehalogenimonas recognized (Bowman et al, 2012)
- <u>2014</u> Commercially-available testing of *Dehalogenimonas* (Dhg) (SiREM's Gene-Trac[®] Dhg) and discovery of Dhg in SiREM's KB-1[®] Plus bioaugmentation culture



ISBR - Case Study #1

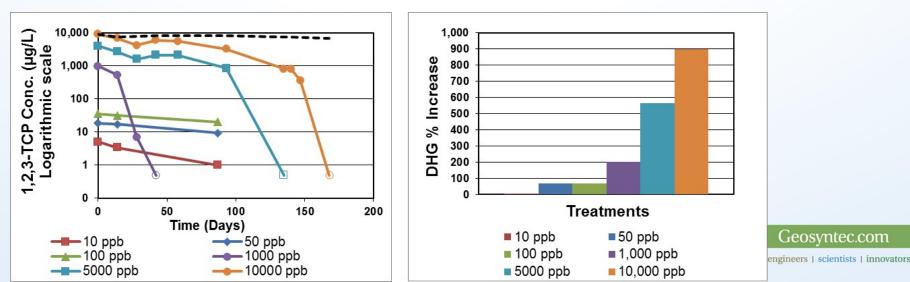
- Direct push injections of a slow-release electron donor (HRCTM)
- Successful long-term reduction of TCP (and dichloropropane [DCP])
- Pilot led to full-scale implementation
- Understanding of remedial mechanisms remained unclear
- Recent Dhg testing inconclusive
 - ~9 years after full-scale injections

- <u>Since 2000</u> Biostimulation at numerous sites; mixed results and unknown/unclear degradation mechanism and pathway
- <u>~2010</u> Dihaloelimination of chlorinated propanes by Dehalogenimonas recognized (Bowman et al, 2012)
- <u>2014</u> Commercially-available testing of *Dehalogenimonas* (Dhg) (SiREM's Gene-Trac[®] Dhg) and discovery of Dhg in SiREM's KB-1[®] Plus bioaugmentation culture
- <u>2014-Present</u> Geosyntec/SiREM R&D to understand and develop ISBR for TCP remediation
 - Degradation pathway
 - KB-1[®]Plus inoculum size, culture acclimation, degradation rates
 - Evaluated practical concentration & pH ranges for effective ISBR
 - Mechanisms for degradation via biostimulation alone
- <u>2016-Present</u> First field demonstration for bioaugmentation

Geosyntec.com

Practical Ranges for Successful ISBR

pH Ranges


- Successful degradation at pH 5-9
- Unsuccessful at pH 4
- Optimal pH appears to be around 7-8

Concentration Ranges

 Degradation observed in laboratory from <10 to 10,000 ppb TCP

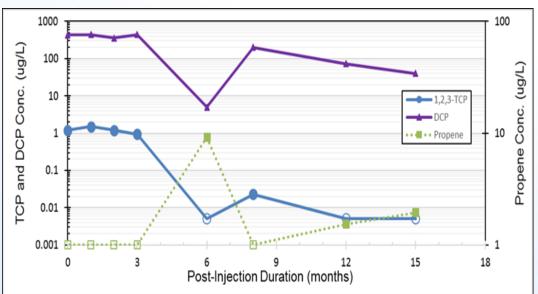
Optimal range observed 1,000 – 10,000 ppb

ISBR - Case Study # 2

• Former agricultural chemical facility

Constituent	Max Site Conc.	State Goal
1,2,3-TCP	72 µg/L	0.005 μg/L (MCL)
1,2-DCP	680 µg/L	5 μg/L (MCL)
Nitrate (as N)	1,800 mg/L	10 mg/L (MCL)
Sulfate	415 mg/L	250 mg/L (Secondary MCL)

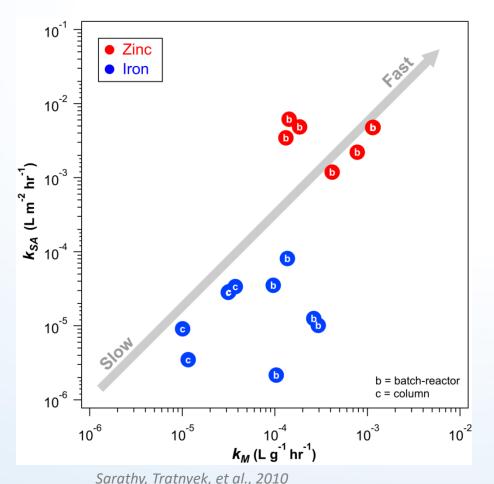
Treatability study elements


- Biostimulation with lactate and emulsified vegetable oil (EVO)
- Bioaugmentation with KB-1[®]Plus
- Promising results with KB-1®Plus bioaugmentation
- Initiated pilot test in May 2016

- First-to-field bioaugmentation
- Injections mid-May 2016
 - EVO/lactate electron donor
 - Bioaugmentation with KB-1®Plus
- Results
 - Slow growth of Dhg population
 - Degradation lag period ~ 6 months

In Situ Chemical Reduction via Zero Valent Metals

- Since Mid-2000s Use of zero valent metals has been evaluated and applied at TCP sites (bench- and pilotscale)
 - Zero valent metal formulations assessed for TCP remediation include Zero Valent Iron (ZVI), Zero Valent Zinc (ZVZ), proprietary mixtures of ZVI and other compounds (e.g., EHC[®])
- <u>2014</u> Geosyntec completed first field demonstration using ZVZ in conjunction with Navy and OHSU. Additional R&D pending under ESTCP grant.



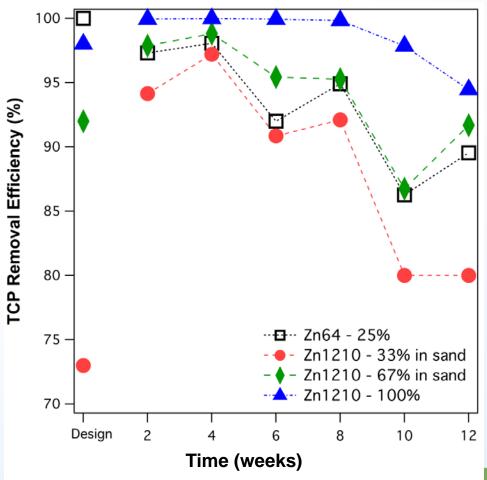
Geosyntec.com

Comparison of TCP Degradation by ZVI and ZVZ

Kinetics of TCP degradation by ZVZ and ZVI

Figure format

- Surface area normalized rate constant (k_{SA}) vs. mass normalized rate constant (k_M)
- Good for complex comparisons of kinetics
- Reactivity increases up and to the right


Observations

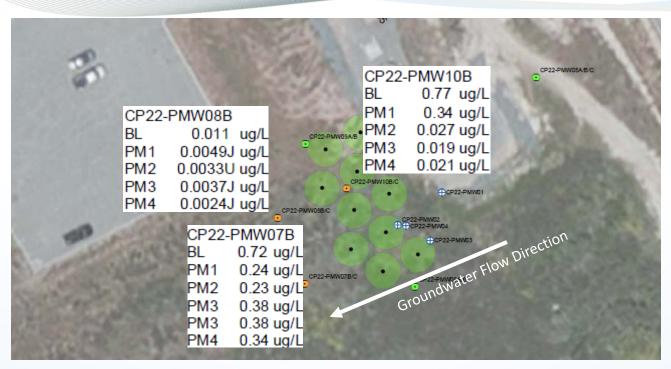
 Both ZVZ and ZVI produce relevant degradation rates, but ZVZ rates significantly faster than ZVI

ZVZ Field-Scale Column Results

- Field-scale column testing conducted
 - 25% Zn64 Dust/75% Sand
 - 33% Zn1210 Powder/67% Sand
 - 67% Zn1210 Powder/33% Sand
 - 100% Zn1210 Powder
- All Zn1210 columns met 1,2,3-TCP treatment goal
 - Treatment efficiency declined over 12 weeks of operation
- Hydrogen gas produced
- Effluent dissolved zinc (0.04 to 0.20 mg/L) was below secondary MCL (5 mg/L)

Salter-Blanc, Suchomel, et al., 2012

ZVZ Pilot Study


- Military facility located in Southern California
 - 1,2,3-TCP present in source well at concentrations up to 10 µg/L, eventual remedial objective for 1,2,3-TCP expected to be 0.5 µg/L
- Pneumatic fracturing injections completed in July 2014 –injected ~14,000 pounds of Zn1210
 - Main issues surfacing, process challenges (pump plugging, etc.)

ZVZ Pilot Study Initial Results

- TCP degradation by ZVZ ongoing over year of post-injection monitoring
- No observed impacts to groundwater flow or secondary water quality impacts

Conclusions/Summary

1,2,3-TCP is an emerging challenge

- Relatively high toxicity -> Low regulatory levels
- Degradation pathway not well understood until now
- On-going advances in situ remediation provides more robust remedial technology alternatives for consideration
 - ISBR parameters appear to be similar to chlorinated ethenes/ethanes
 - Potentially similar costs for implementation, with initial concentration considerations
 - ISCR with ZVZ appears to be effective at low initial concentrations
 - Long-term validation of technology is ongoing

Team & Acknowledgements

- Geosyntec Consultants
 - Melissa Schmitt, PE
 - Eric Suchomel, PhD, PE
 - Rula Deeb, PhD, PE
- SiREM
 - Sandra Dworatzek
 - Jeff Roberts
 - Phil Dennis
 - Jennifer Webb

- Oregon Health and Science University
 - Paul Tratnyek
 - Alexandra Salter-Blanc
 - James Nurmi

- Naval Facilities Engineering Command
 - Theresa Morley
 - Nancy Ruiz

- Research at Oregon Health & Science University (OHSU) is funded by Strategic Environmental Research and Development Program (SERDP) Grant No. ER-1457.
- Commeralization by Geosyntec Consultants is funded by private clients and the Navy Environmental Sustainability Development to Integration (NESDI) Program Project # 434