

CONDITIONS FOR MAXIMIZING ON-FARM RECHARGE WITH FLOOD FLOWS

A CASE STUDY FOR THE SOUTH AMERICAN AND COSUMNES GROUNDWATER SUB-BASINS

R.M. Gailey, UC Davis

COLLABORATORS

- Erfan Goharian, UC Davis
- Stephen Maples, UC Davis
- Graham Fogg, UC Davis
- Jay Lund, UC Davis
- Josué Medellín-Azuara, UC Merced

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

RECHARGE OPERATION CONSIDERATIONS

- Source Water Options
 - Storm water runoff
 - Recycled water
 - Storm flows from streams
 - Reoperation of reservoirs on rivers
- Water Placement Options
 - Construct dedicated facilities (basins, dry wells)
 - Repurpose existing facilities (gravel pits)
 - Flow down disconnected or dry rivers and creeks
 - Crop lands

RECHARGE OPERATION CONSIDERATIONS

- Conveyance (routing, capacity, access)
- Recharge Site Infiltration Capacity
 - Soil/shallow geology
 - Deeper geology interconnectedness
- Storage Space (unsaturated zone thickness)
- Fate of Water Over Time
 - Local increased storage and use
 - Discharges to baseflow and flows across sub-basin boundaries

RECHARGE OPERATION CONSIDERATIONS

- Recharge Site Suitability
 - Location relative to conveyance and favorable hydrogeology
 - Timing of site availability relative to water available for recharge
 - Topography
 - Slope
 - Existing berms
 - Cost
 - Purchase
 - Rent
 - Options
 - Fees/rebates

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

South American and Cosumnes Groundwater Sub-basins

- South American and Cosumnes groundwater sub-basins
- Pre-adjustment southern boundary shown for Cosumnes
- Bounded by rivers and foothills

Total Acres: 525,000

• Urban: 95,000

Agricultural: 140,000
 (DWR 2014 data)

• Wetland: 21,000

• Undeveloped: 269,000

140,000 Acres Agricultural Use

Fall 2016 Groundwater Elevations (ft MSL)

Fall 2016 Depths to Groundwater (ft)

Fall 2016 Groundwater Elevations (ft MSL)

- SGMA Basin Priorities
 - S. American: High
 - Cosumnes: Medium
- SGMA Undesirable Result Considerations
 - Chronic lowering of water levels
 - Chronic depletion of storage
- Interest by some in improving support for surface water system

Reach of Cosumnes River in Dry Season

(Nature Conservancy)

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

- What might a managed aquifer recharge project look like for the study area?
- A portfolio of water sources and application approaches likely best
- UC Water considering combination of:
 - American River uplands watershed management
 - Folsom Reservoir reoperation
 - Application of water made available to croplands
- Looking at what might be possible without too much limitation regarding project funding at this point

Concept is to move available water released from Folsom to sub-basins via Folsom South Canal

- Initial work is one-way storage scenario
 - Recharge sub-basin to support ongoing water budget stresses (pumping, surface water baseflow, inter-basin flow)
 - No aquifer storage and recovery
- Perfect foresight approach provides upper bound on what is possible
- Beginning to look at total storage (surface water and groundwater)
 - Supports uses in sub-basin
 - Can extract stored water from basin for external uses
 - Flexibility to meet environmental flow and quality requirements downstream of Folsom without losing water

Folsom Reoperation Scenario

WAR Capture and Facility Utilization

(Erfan Goharian)

- Large flows require significant total storage capacity across recharge sites
- Periodic occurrence of winter flows results in low facility utilization
- Is it always appropriate to build storage infrastructure?

WAR Capture and Facility Utilization

Local Municipal
Supply Reservoirs

Camanche

Pardee

Los Vaqueros

- How to encourage use of private lands for public good?
- Pay for annual option to flood land in winter

- Base fees on reverse auction (assumed costs at present)
- Water deliveries limited by
 - Berm height
 - Seepage rate
 - Required draining time
- Pick suite of parcels that gets the most water in the ground with available funds

ParFlow

(Stephen Maples)

Geologic variability incorporated into infiltration rates

C2VSim

Model observations

18 groundwater head observation locations

6 surface water flow observation locations

Cosumnes River/upstream

Dry Creek

Mokelumne River

Confluence

American River

Sacramento River

Evaluate Responses to Recharge (C2VSim)

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

- Shown for greatest funding level
- Highest applications of recharge water in areas with favorable hydrogeology
 - High infiltration rate (west)
 - Thick unsaturated zone (east)
- Range of crop classes represented in high application areas

- Shown for
 - Greatest funding level
 - End of 20-year planning horizon
- Mounding centered on most intensively recharged areas

Change in Groundwater Elevations Over Base Case (ft)

36% WAR used

Recharged: 3, 901 TAF

Stored: 2,419 (62%)

Streams: 718 (18%)

Other Basins: 764 (20%)

INITIAL RESULTS WINTER EXTENDED AND ALL LAND

Drought – no water available for recharge

- Area for recharge increases with funding
- Diminishing returns to scale
- Not all cheapest land used first => Hydrogeology matters

- Highest infiltration rates exceed that assumed in initial capture analysis
- Recharge capacity falls off pace fairly soon
- Limitation of assumed 1-foot berm height

- Highest for locations with high infiltration rate and available land
- Other locations with significant amounts of available land also favorable
- Note proximity to Folsom South Canal

PRESENTATION OUTLINE

- Summary of Recharge Operation Considerations
- Overview of Study Area
- Approach for Planning-Level Analysis
- Some Results
- Initial Conclusions

CONCLUSIONS

- Better decisions result from considering all available information
- Additional data needs
 - Soil infiltration variations
 - Detailed geology
 - Field tests of infiltration rates
- Future work
 - Additional details regarding crop tolerance and costs to use land
 - Proximity to Folsom South Canal
 - Range of cropland rental arrangements
 - Portfolios of recharge approaches