

Prepared for 2018 Biennial Symposium on Managed Aquifer Recharge

Navigating Regulatory Hurdles for Recharge with Various Source Waters in California

Prepared by Rob Beggs Ron Crites Mike Wademan Wendy Broley

March 6, 2018

Opportunities – Big Picture

- New California groundwater management laws (SGMA)
 - Sustainability stop ongoing overdraft (ex. 1.8M af/yr in San Joaquin Valley).
 - Direct credit for recharge
- Emphasis on greater use of recycled water (2M af by 2030)
- New reuse policy and regulations
- Ag MAR percolation and Ag-ASR
- Funding and financing opportunities

Groundwater Reuse Replenishment Regulations (GRRR) for Indirect Potable Reuse (IPR)

- Surface Spreading
 - Minimum of tertiary treatment
 - TOC Requirement at production wellhead
 - Meet all regulated contaminant limits at production wellhead
 - Meet Basin Plan objectives
- Injection
 - Full Advanced Treatment (FAT)
- Both
 - 12 log, 3 barriers pathogen reduction
 - Min. underground retention times

GRRR Submittals

SURFACE APPLICATION

Planning

- Site investigation
- Underground retention targets (6 months+)
- Dilution water 80% of total; less with advanced treatment

Engineering Report

• 7 major technical sections

Other Requirements Prior to Operation

- 6 reports
- Design and performance proofs
- 3+ monitoring wells

Detailed Notice and Public Hearing

• Well owners within 10 years Darcy travel time

Operation Optimization Plan

- 4 reports
- High frequency monitoring for TOC and N
- Quarterly and annual monitoring for extremely broad range of constituents
- Annual report

General

Requirements for maintenance, records, design, alarms, etc.

SUBSURFACE APPLICATION (INJECTION) DIFFERENCES

- Full advanced treatment, testing, performance monitoring
- Indicator study, oxidation testing, continuous monitoring
- Likely lower underground retention time (2 months, with adjustment)
- Likely no or less dilution water needed

IPR Compliance Risks

Engineering Report

- Methods of compliance are open-ended ("including <u>any</u> other features specified by the Regulatory Agency").
- Contingent point-of-use treatment may be discouraged.
- Regulations ignore flat gradients.
- The implementation pathway for monitoring wells, engineering report, and study results approvals is iterative, not linear.

Operation

- Rapid response required and possible shutdown for exceedances
- Tracer study travel time defined at 10% of peak concentration could change retention and control boundaries after startup

Fresno Groundwater Recharge History

Leaky Acres (Surface Water)

- Recharge with surface water
- 225 acres

Secondary Effluent Percolation & Recovery

- Water recovered for ag use
- No detectable viruses in recovered water

Potential Opportunities with New Tertiary Effluent

- Landscape irrigation
- Groundwater recharge

Securing Our Water Future

IPR Opportunity – Nielsen Site

- Designed for surface water percolation
- Irrigation district canal at site (diluent water)
- Easy access to recycled water
- Cool months excess capacity
- 400 af recycled water
- 1600 af surface water

Should be ideal, right??

Travel Time and Zone of Controlled Wells

2

Legend

Challenges and Lessons

Regulatory Challenges

- DDW requested everything vs. just the listed Engineering Report items
- Extension of municipal water supply to area required as contingency (~\$3M)
- Flat groundwater gradient
- Getting credit for vadose zone treatment
- Many nearby domestic wells
- Monitoring, monitoring, monitoring...
- Reports, reports, reports.....

Lessons

- Inadequate scale for overhead and ancillary costs burden
- At ~ \$10,000 capital cost per af/yr capacity, not cost competitive with water supply alternatives

LADWP Groundwater Replenishment Project

- IPR project developed by the Los Angeles Department of Water and Power (LADWP) with the Los Angeles Bureau of Sanitation
- Up to 30,000 acre-feet per year to replenish the San Fernando Groundwater Basin
- Builds on history at Montebello Forebay (50 mgd), Chino (11 mgd), Orange County (100 mgd)

Recommended Process Train

- Higher recovery and production of purified water (24.5 mgd versus 16.8 mgd with reverse osmosis)
- Lower energy consumption
- Reduced waste (no brine)
- Lower capital and operating expenses
- Est. capital cost \$15,000 per af/yr capacity
- Est. total cost \$1,000 per af produced

Pathways to Meet GRRR for LADWP

Limiting recycled water contribution %

• FAT

- Dilution using side stream treatment
- Regulatory framework for Total Organic Carbon alternative
 - Use BDOC and other constituents instead of TOC
 - Contaminants of Emerging Concern protective of public health via MCLs
 - Show removal of bulk organic matter of wastewater origin
 - Bioassays
 - Use Technical Advisory Committee, engage regulators on pilot testing

Soquel Creek – Pure Water Soquel IPR

Uses Full Advanced Treatment

- For Seawater Intrusion Barrier and Groundwater Replenishment
- No dilution requirement
- Brine not a problem
- Easier GRRR compliance
- Public acceptance critical

Regulatory Considerations and Hurdles

- Conditioning injectate to prevent mobilization of trace metals
- Insuring adequate groundwater travel time to nearby wells
- Producing required reports
 - Antidegradation Evaluation in-lieu of Salt Nutrient Management Plan (SNMP)
 - Environmental Impact Report (EIR)
 - Engineering Report
 - Other reports required under GRRR
- Generating/maintaining public project support
- Project Cost \$60M \$70M (~\$40,000 per af/yr capacity); ~\$3,000/af of supplemental water supply for 20 years

Westlands Ag-ASR Pilot Study

- Surface water sources; ag sand media filtration
- Occasional chlorination before backflushing
- ~ 500 gpm injection rate for 12 weeks (180 af)
- ~ 1200 gpm recovery rate weekdays for 8 weeks (180 af)
- Class V EPA permit with Regional Board and DDW approval
- Water quality and bio-indicators measured in and out

Particle Trace Model

Addressing regulatory concerns about recapture and travel time to private wells

Coliform Injected and Recovered

No bio-indicators in water after first day of recovery pumping

Water Quality Results - Conductivity

Westlands Pilot Ag-ASR Water Quality Results

- Using sulfate and EC as intrinsic parameters, ~ 60% of the injected water was recovered.
- Recovered water was much higher quality than background.
- Mobilization of trace metals was not problematic.
- No disinfection byproduct issues with intermittent chlorination and backflush recovery.
- Results indicate low risk for pathogenic microbes migration.

Westlands Regulatory Issues

- Pursuing a District-wide programmatic approach for additional wells
- Regional Water Board reviewing water quality results and considering policy
- Separation to domestic wells and monitoring likely to be key issues
- Regulatory restrictions currently forcing "big gulp" approach to water supply for CVP contractors

Conclusions - Elements for Success

- Work with regulators beginning early in the process.
- Pilot tests help provide a level of assurance for regulators.
- Large scale projects and/or high water cost areas can better handle the high overhead compliance costs with recycled water.
- Avoid projects in areas with a high density of private domestic wells.
- Try to negotiate point-of-use contingency treatment up front.
- Advanced treatment can lessen the regulatory burden for recycled water.

Questions?

Prepared for 2018 Biennial Symposium on Managed Aquifer Recharge

Pilot Testing Alternative Treatment Trains to Reduce Costs and Increase Recovery (vs. FAT)

