

# Field & Lab. Experiments on Artificial Recharge in a Saline Confined Aquifer

N. Park, E. Jung, B. Nam, R. Babu and C. Jang Dong-A University, Busan, Korea March 5<sup>th</sup> 2018

Subsurface Reservoir Research Center









### **II. Field Experiments**

## **III.Laboratory Experiments**

### **IV.Next Step**



#### **Project objective**

Development of a simulation-optimization (SO) model for planning injection and pumping wells in a saline confined aquifer.
Validation of the SO model against field and laboratory experiments.

#### Simulation–Optimization(S/O)

Input parameters SSR 지하저수지 연구단 Measure of performance

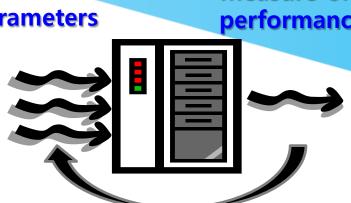
#### Simulation-Optimization Model : **SIOP**

• Simulation model (Sharp Interface Model)

Sharp Interface Governing Equation

SIOP

$$\nabla \cdot (b_{f}\mathbf{K}_{f} \cdot \nabla h_{f}) = b_{f}S_{s_{f}}\frac{\partial h_{f}}{\partial t} - \theta \frac{\partial \xi}{\partial t} - Q_{f}$$


$$\nabla \cdot (b_s \mathbf{K}_s \cdot \nabla h_s) = b_s S_{s_s} \frac{\partial h_s}{\partial t} + \theta \frac{\partial \xi}{\partial t} - Q_s$$

• Optimization method (GA, DE, SCE-UA)

Sharp Interface Model

GA (Genetic Algorithm) DE (Differential Evolution)

**Objective:** Maximize the performance of a subsurface reservoir **Decision variables:** # of wells, locations, operating rates, times

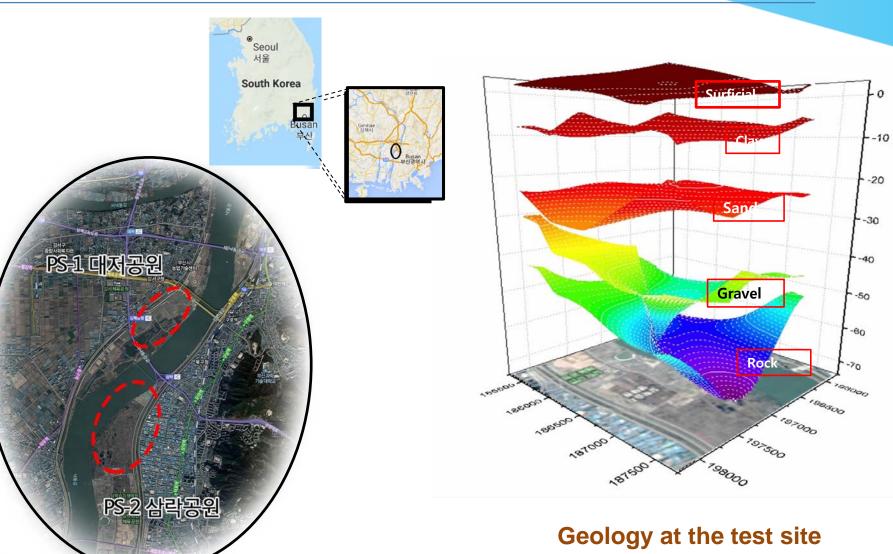


#### **Optimization function**



Cluster System (# of CPUs: 128, OS: Linux)

4



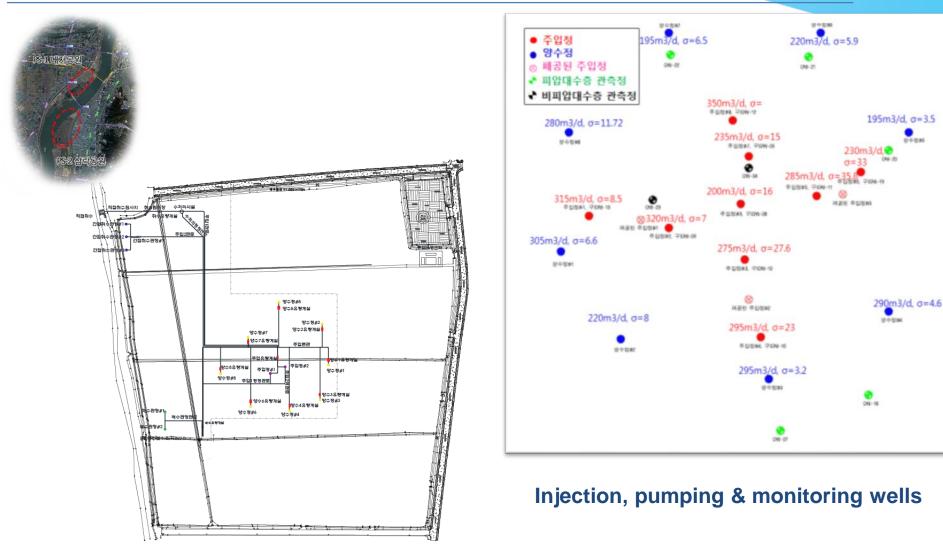

# II. Field Experiments

## **III.Laboratory Experiments**

### **IV.Next Step**

#### Location of the test facility

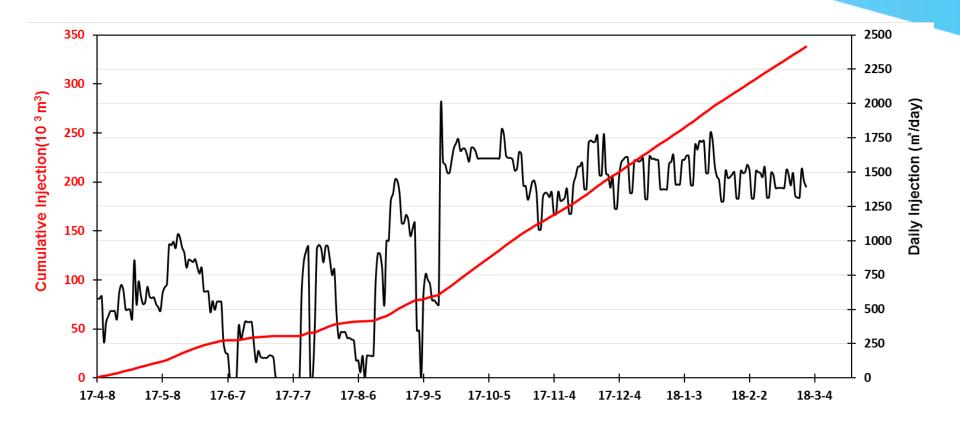







#### **Quality of the native groundwater**

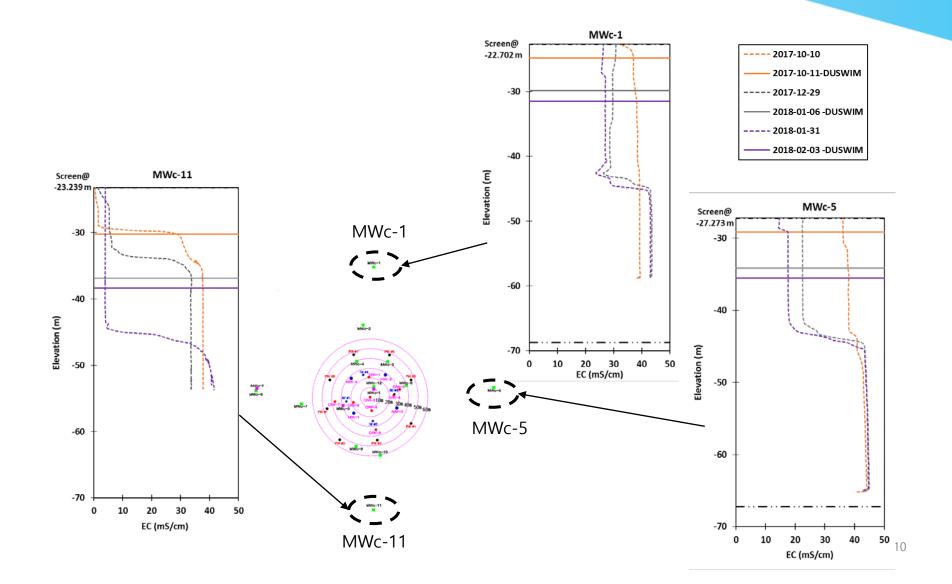
| Sampling date:                  |                                                                                | Unconfined aquifer |             |        |        |       |       |
|---------------------------------|--------------------------------------------------------------------------------|--------------------|-------------|--------|--------|-------|-------|
| July 14-15, 2014                | ow1                                                                            | ow2                | ow5         | ow6    | ow7    | ow3   | ow4   |
| рН                              | 7.68                                                                           | 7.24               | 7.16        | 7.31   | 7.6    | 7.76  | 7.45  |
| Temperature, °C                 | 18.6                                                                           | 18.48              | 17.76       | 18.85  | 18.1   | 20.37 | 17.9  |
| $CIO_4^{-}$ (mg/L)              | N.D.                                                                           | N.D.               | N.D.        | N.D.   | N.D.   | N.D.  | N.D.  |
| $SO_4^{2-}$ (mg/L)              |                                                                                |                    | 20.00       |        |        |       |       |
|                                 | 2.79                                                                           | 2.68               | 2.92        | 1.96   | 2.24   | 3.12  | 2.49  |
| Cl <sup>-</sup> (mg/L)          | 17.6                                                                           | 21.2               | 20.2        | 21.8   | 18.1   |       |       |
| $NO_3^-$ (mg/L)                 |                                                                                |                    | 6.40        |        |        |       |       |
| TDS (mg/L)                      | 26.43                                                                          | 26.74              | 26.78       | 41.63  | 26.72  | 0.835 | 1.319 |
| Conductivity (ms/cm)            | 40.66                                                                          | 41.14              | 41.25       | 41.55  | 41.12  | 1.29  | 2.029 |
| ORP (mV)                        | -171.50                                                                        | -104.4             | -86.7       | -125.8 | -138.2 | -12.2 | 81.4  |
| Salinity (psu)                  | 26.12                                                                          | 26.4               | 26.33       | 27.6   | 26.39  |       | 1.04  |
| Zn (mg/L)                       | 0.11                                                                           | 0.04               | 0.07 (2.14) | 0.06   | 0.08   | 0.08  | 0.07  |
| Mn (mg/L)                       | 1.75                                                                           | 2.37               | 2.26 (0.57) | 2.03   | 1.99   | 0.26  | 4.16  |
| Fe (ma/L)                       | 10.89                                                                          | 9.49               | 7.70 (N.D.) | 5.20   | 7.27   | 0.65  | 0.97  |
| B (mg/L)                        | 2.74                                                                           | 2.71               | 2.91        | 2.99   | 2.77   | 0.42  | 0.35  |
| AI (mg/L)                       | 0.08                                                                           | 0.08               | 0.07        | 0.08   | 0.14   | 0.22  | 0.09  |
| As (mg/L)                       | N.D.                                                                           | N.D.               | N.D. (0.01) | N.D.   | N.D.   | N.D.  | N.D.  |
| Se (mg/L)                       | N.D.                                                                           | N.D.               | N.D.        | N.D.   | N.D.   | N.D.  | N.D.  |
| Cr (mg/L)                       | N.D.                                                                           | N.D.               | N.D. (N.D.) | N.D.   | N.D.   | N.D.  | N.D.  |
| Cd (mg/L)                       | N.D.                                                                           | N.D.               | N.D. (N.D.) | N.D.   | N.D.   | N.D.  | N.D.  |
| Pb (mg/L)                       | N.D.                                                                           | N.D.               | N.D. (N.D.) | N.D.   | N.D.   | N.D.  | N.D.  |
| Cu (mg/L)                       | N.D.                                                                           | N.D.               | N.D. (N.D.) | N.D.   | N.D.   | N.D.  | N.D.  |
| Dissolved oxygen (mg/L)         | 0.92                                                                           | 3.54               | 4.24        | 0.86   | 1.54   | 1.17  | 3.15  |
| Blue: performed by this team of | Black: performed by KIST team either on site or in the lab N.D. : Not detected |                    |             |        |        |       |       |


#### **Test facility**



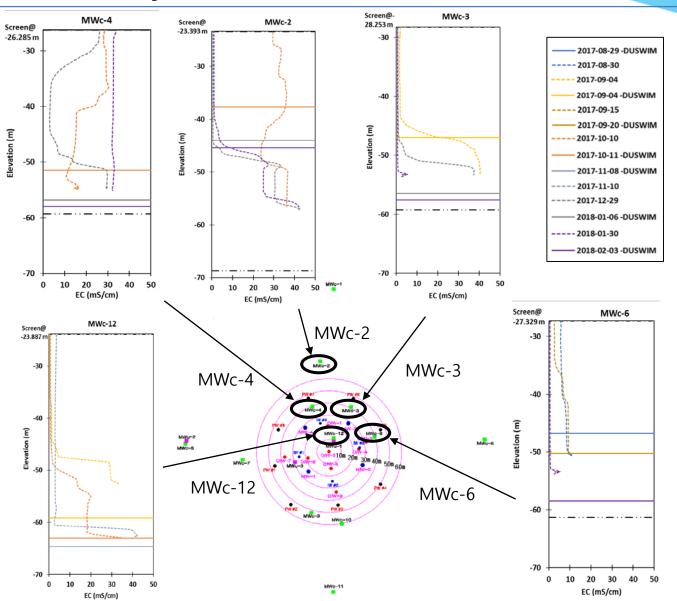





#### **Injection record**



**Optimum Injection? : Non-optimal** 


#### SSR |지하저수지 연구단 Subsurface Reservoir Research Center

#### Freshwater body-observed & modeled



#### SSR 지하저수지 연구단 Subsurface Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir

#### Freshwater body-observed & modeled

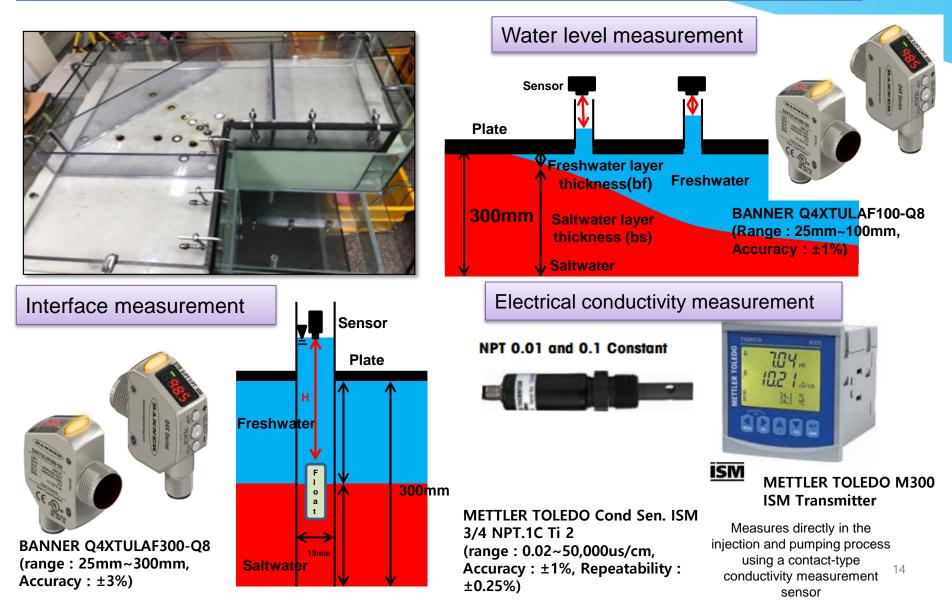


11



#### Water quality changes

|                                      | River water | MW        | PW-6      |           |
|--------------------------------------|-------------|-----------|-----------|-----------|
|                                      | 21-Feb-18   | 21-Nov-17 | 21-Feb-18 | 21-Feb-18 |
| pH                                   | 8.42        | 7.94      | 8.09      | 8.05      |
| DOC (mg/L)                           | 5.98        | 2.69      | 2.32      | 3.22      |
| CODcr (mg/L                          | 22.45       | 10.80     | 10.10     | 14.23     |
| ClO <sub>4</sub> <sup>-</sup> (mg/L) | 0.00        | 0.00      | 0.00      | 0.00      |
| SO <sub>4</sub> <sup>2-</sup> (mg/L) | 69.61       | 39.08     | 79.96     | 72.26     |
| Cl⁻ (mg/L)                           | 0.967       | 0.614     | 0.191     | 1.512     |
| $NO_3^-$ (mg/L)                      | 4.41        | 0.37      | 0.90      | 10.26     |
| $NO_2^-$ (mg/L)                      | 0.00        | 0.00      | 0.00      | 0.00      |
| TDS (mg/L)                           | 1.09        | 1.27      | 0.354     | 1.25      |
| Turbidity (NTU)                      | 1.30        | 1.23      | 0.60      | 1.50      |
| Fe (mg/L)                            |             | 0.00      | 0.00      |           |
| Cond. (mS/cm)                        | 0.66        | 1.98      | 0.65      | 5.40      |
| Sal. (ppt)                           | 1.30        | 0.00      | 0.00      | 0.90      |
| DO (mg/L)                            | 0.82        | 0.18      | 0.66      | 1.22      |
| ORP (mV)                             | 2.50        | -154.87   | 3.40      | 43.60     |
| Total heterotrophic cell (CFU/ml)    | 38100       | 40066     | 35600     | 36740     |
| Total Coliforms (CFU/100 ml)         | 0           | 0         | 0         | 0         |




### II. Field Experiments

## **III.Laboratory Experiments**

### **IV.Next Step**

#### Sand tank



SSR 지하저수지 연구단

#### **Preliminary experiment**

#### **Hydrological properties**

Coefficient of Permeability (K) : 110 m/d

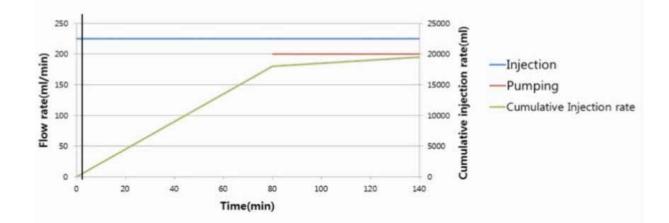
Specific Storage(Ss):0.004 m<sup>-1</sup>

Aquifer Thickness: 0.3 m

Specific gravity of saltwater :1.025

Porosity: 0.4

#### **Operational Scenario**


**Injection**, **Pumping** Time Injection 225 ml/min 140 min **Pumping Well 1** 16.67 ml/min **Pumping Well 2** 33.33 ml/min After 80 minutes of **Pumping Well 3** 33.33 ml/min injection 200 ml/min **Pumping Well 4** 33.33 ml/min Pumping Start pumping **Pumping Well 5** 33.33 ml/min (1 hour) **Pumping Well 6** 33.33 ml/min **Pumping Well 7** 16.67 ml/min

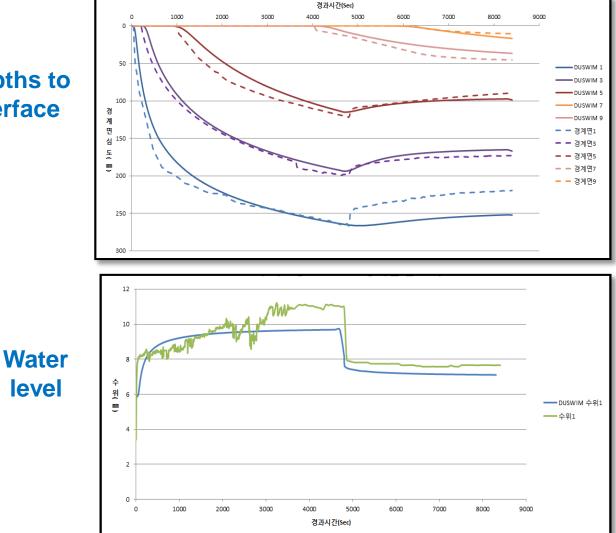


15

#### **Preliminary experiment**






SSR | 지하저수지 연구단



#### **Preliminary experiment**



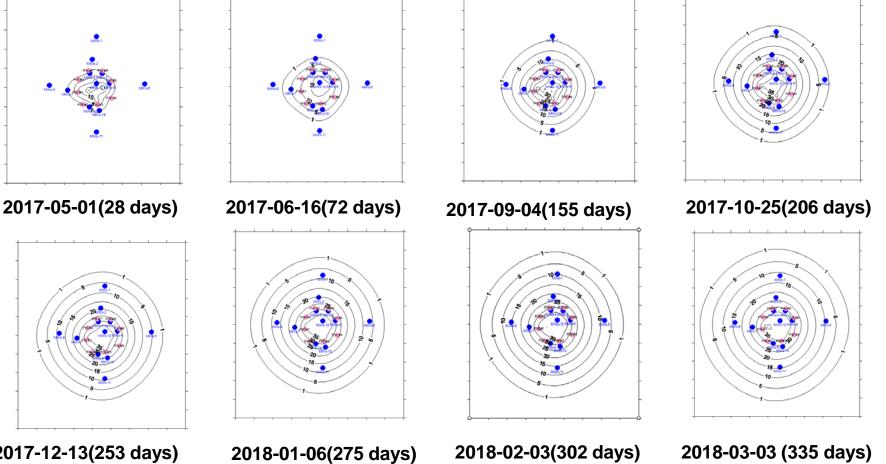
level



17



### II. Field Experiments


## **III.Laboratory Experiments**

## **IV.Next Step**

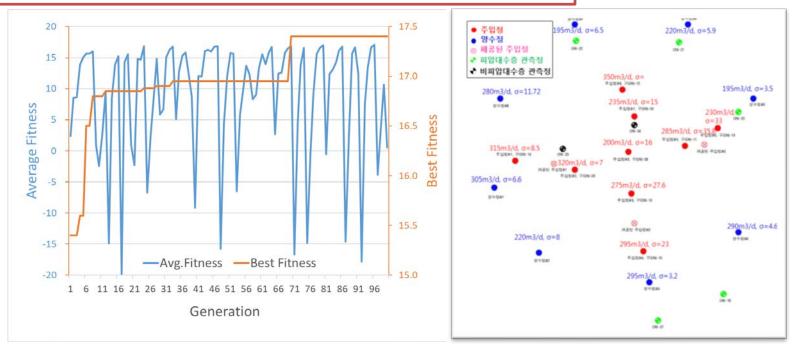
SSR | 지하저수지 연구단

### **IV. Next Step**

#### **Pumping**



2017-12-13(253 days)


2018-01-06(275 days)

2018-02-03(302 days)

### **IV. Next Step**

#### Pumping

## Objective: Avoid pumping salt water for three months Decision variables: pumping rates



SSR 지하저수지 연구단 Subsurface Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir

#### Identified Pumping Rates (m<sup>3</sup>/d) – Optimal?

| Pumping<br>Well ID | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | Total |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| Qopt<br>(m3/d)     | 251 | 242 | 233 | 181 | 164 | 147 | 130 | 156 | 1503  |

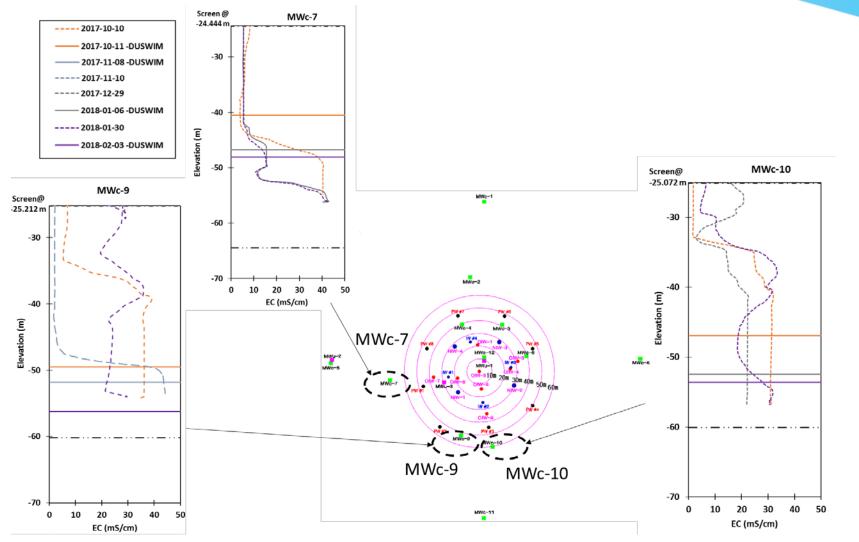




# Thank You

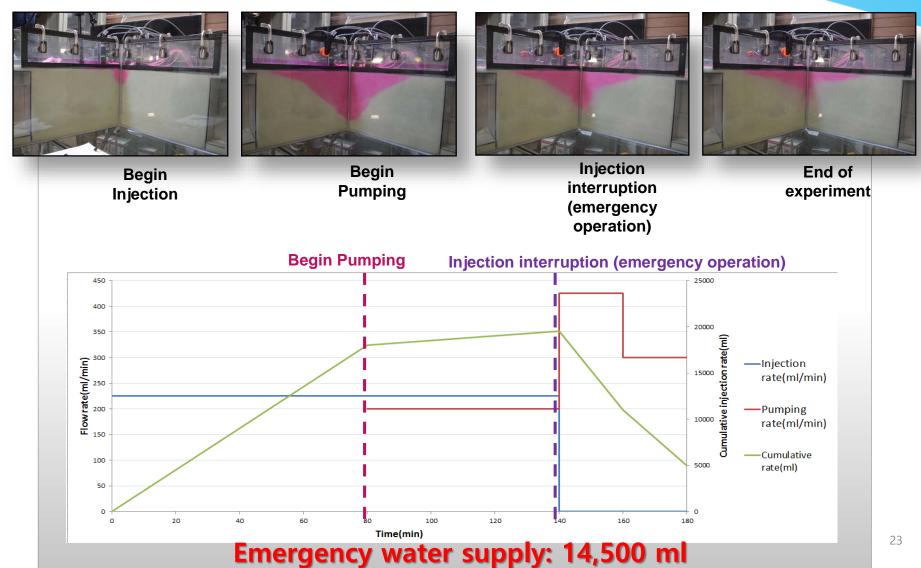
Acknowledgement

This research was supported by a grant(code 17AWMP-B066761-05) from AWMP Program funded by Ministry of Land, Infrastructure and Transport of Korean government.


#### Subsurface Reservoir Research Center






#### SSR 지하저수지 연구단 Subsurface Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir

#### Freshwater body-observed & modeled



#### **III.5 Hydraulic experiment results..**

**Emergency water supply capacity - Hydraulic model results** 



SSR 지하저수지 연구단