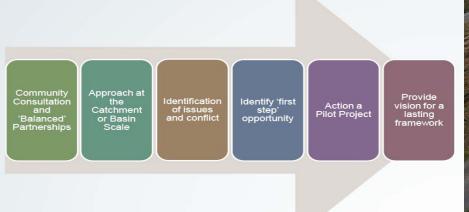


A global perspective on the advance of Managed Aquifer Recharge

P. Dillon^{1*}, P. Stuyfzand², T. Grischek³, M. Lluria⁴, R.D.G. Pyne⁵, R.C. Jain⁶, J.Bear⁷, J. Schwarz⁸, Weiping Wang⁹, E. Fernandez¹⁰, C. Stefan¹⁰, M. Pettanati¹¹, J. van der Gun¹², C. Sprenger¹³, G. Massmann¹⁴, B.R. Scanlon¹⁵, J. Xanke¹⁶, P. Jokela¹⁷, Y. Zheng¹⁸, R. Rossetto¹⁹, M. Shamrukh²⁰, P. Pavelic²¹, E. Murray²², A. Ross²³, J.P. Bonilla Valverde²⁴, A. Palma Nava²⁵, N. Ansems²⁶, K. Posavec²⁷, K. Ha²⁸, R. Martin²⁹, M. Sapiano³⁰

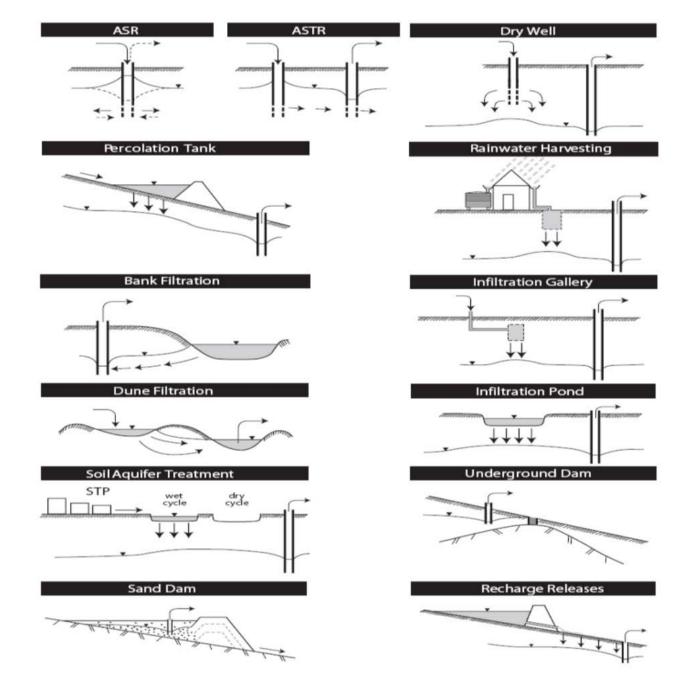

BSMAR16 , 5-7 March 2018

Contents

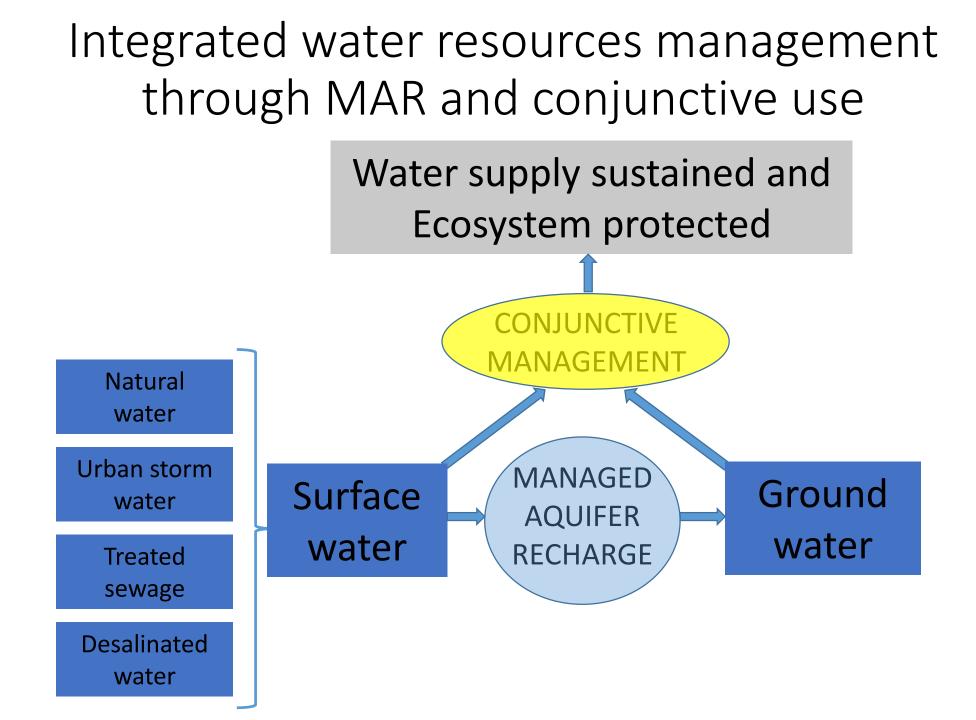
- What is MAR ?
- How much does MAR contribute to global water supplies ?
- Progress in research
- What next?

Images courtesy of Bob Bower, WGA, Hinds/Hekeao MAR pilot project, Canterbury Plains, New Zealand

Evolution of groundwater recharge augmentation


(adapted from NRMMC, EPHC & NHMRC 2009)

Unintentional Recharge Enhancement	Unmanaged Recharge (for disposal)	Managed Aquifer Recharge (for recovery)
 Clearing of deep rooted vegetation, or soil tillage Spate irrigation Irrigation deep seepage Leakage from water pipes and sewers 	 Stormwater drainage wells and sumps Septic tank leach fields Mining and industrial water disposal to sumps Drainage water from construction pits 	 Streambed channel modifications Bank filtration Water spreading Recharge wells and shafts Reservoir releases

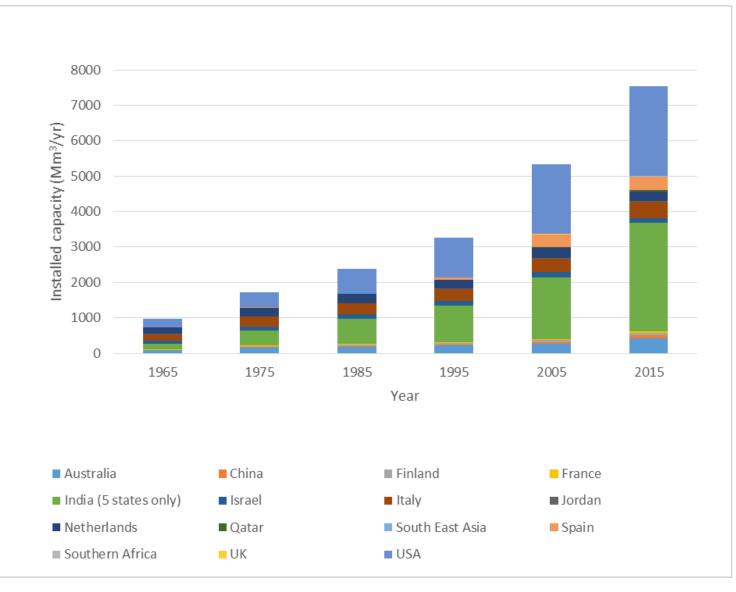

Terminology is important

Artificial recharge – old name for MAR but still used if water quality is not being managed

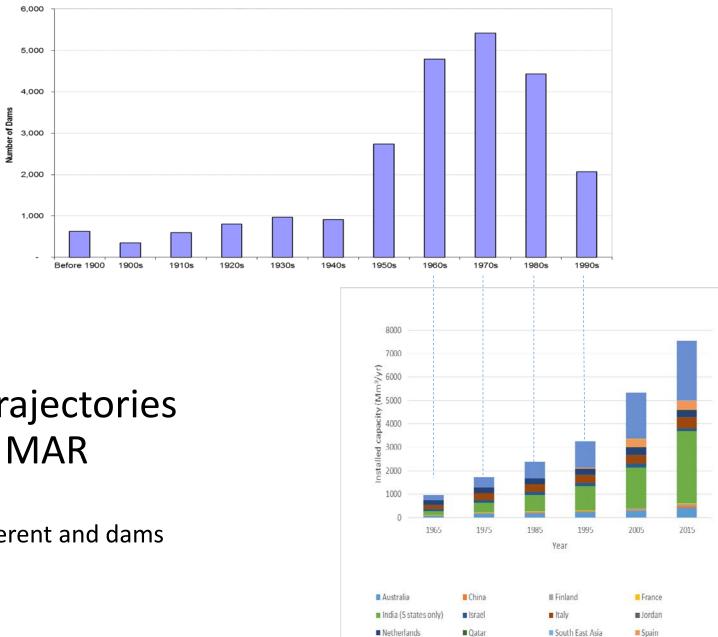
Terms for types of MAR – use consistent terms because these have important distinctions for water quality regulators and we want consistent governance

Dillon (2005) Future management of aquifer recharge. Hydrogeology J , 13 (1) 313-316.

Reported volume of MAR in USA from 1960s to 2015


(Million cubic metres/year : $1Mm^{3}/yr = 810.7 \text{ acre-ft} = 264.2 \text{ million}$ (US) gallons)

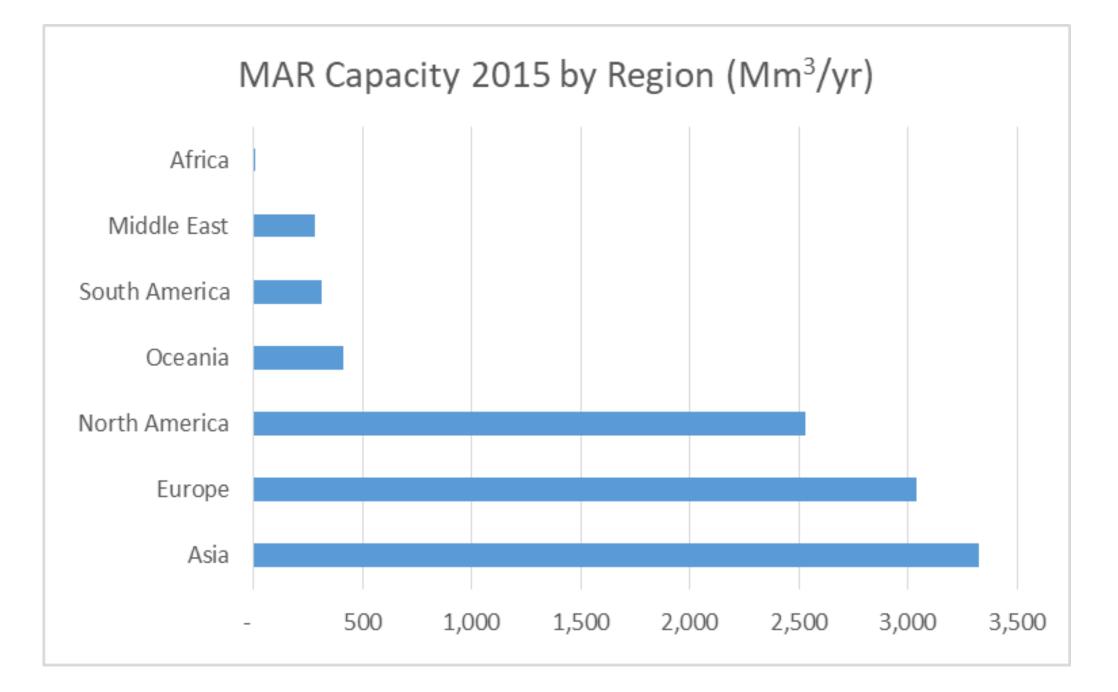
			Infiltration systems							Recharge wells			
Decade	Total	Central Valley, Kern County CA #	CAP, AZ *	Recycled water, AZ *	Orange County, CA **	LA Montebell o Forebay CA ##	Island	?	Recycled water, Orange County, CA **	El Paso, Texas ##	Orlando, Florida, stormwat er wells ##	?	
1961-1970	243	0	0	0	150	15	56		0	0	22		
1971-1980	423	70	0	0	200	28	96		3	0	26		
1981-1990	703	250	0	0	250	33	120		6	13.8	30		
1991-2000	1128	500	70	20	300	62	120		10	13.8	32		
2001-2010	1962	1000	250	80	300	74	120		92	13.8	32		
2011-2015	2532	1400	400	100	300	74	120		92	13.8	32		
Acre-ft USA: 2,050,000 CA: 1,510,000 AZ: 405,000 NY+FL+TX : 135,000 DO YOU BELIEVE THIS???? MG USA: 669,000 CA: 493,000 AZ: 131,000 NY+FL+TX : 44,000 DO YOU BELIEVE THIS????								THIS????					

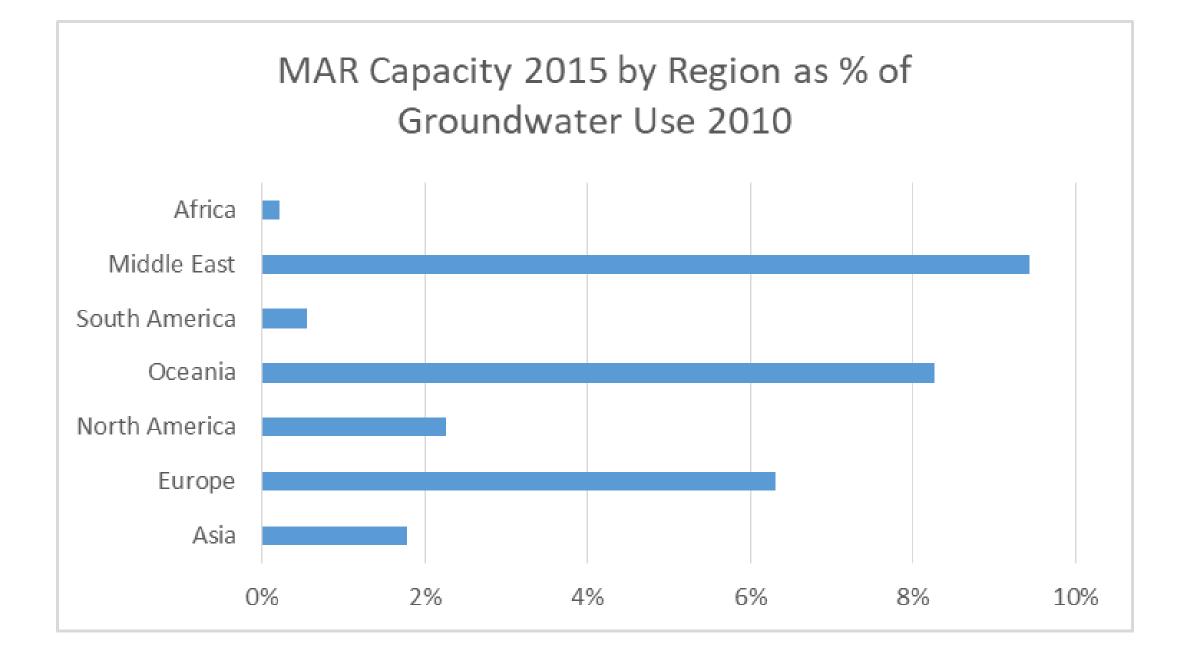

and * Scanlon et al (2016) Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona.
 ** Mills (2002) The quest for water through artificial recharge and wastewater recycling. (OCWD)
 ## National Research Council (1994). Ground Water Recharge Using Waters of Impaired Quality. National Academies Press.

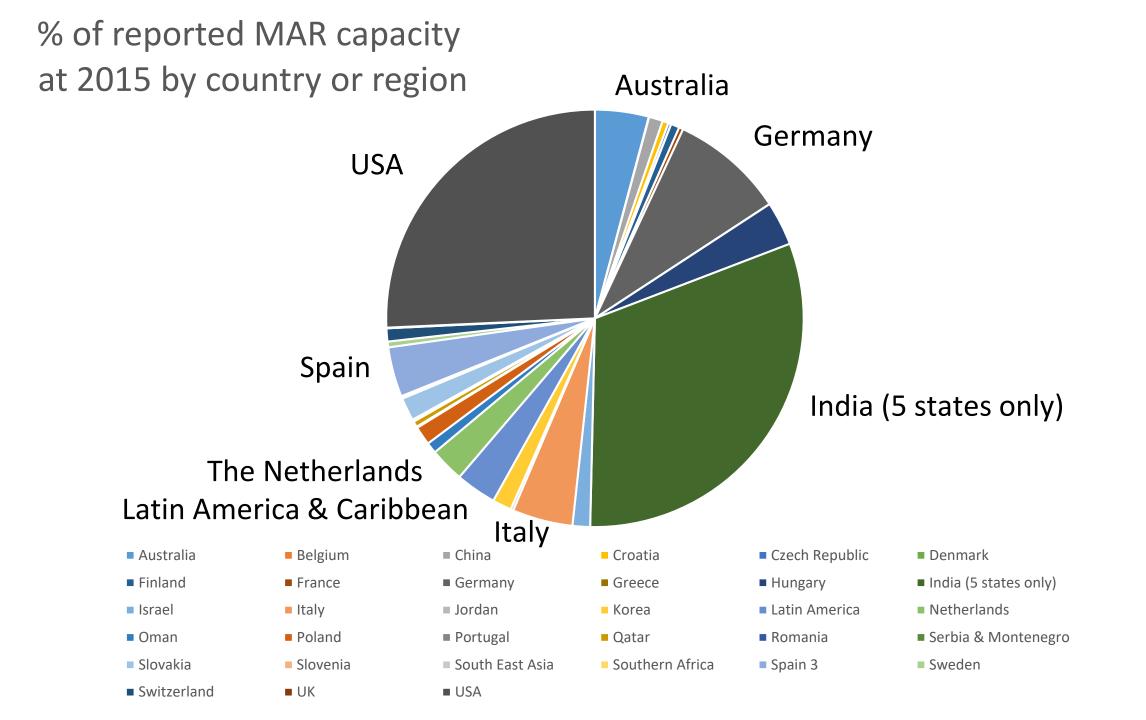
- Most USA states are missing, and some projects are missing even in reported states. No bank filtration was reported.
- If you have figures or know someone who has summaries, please pass them on.
- Wanted: A volunteer to do a summary for each state where MAR in use or for USA ?

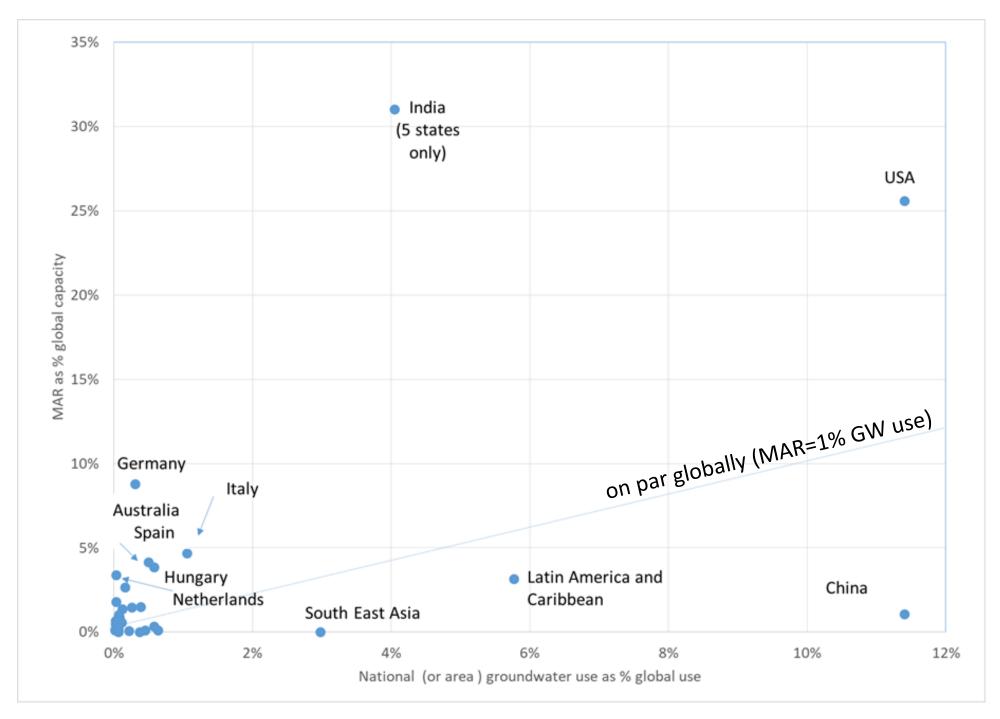
Growth in MAR for 15 countries or states where its use has been documented since 1965 (accounts for 76% installed MAR capacity at 2015)

Commissioning of Large Dams, by Decade, 20th Century


Southern Africa


UK


USA


Comparing trajectories of dams and MAR

Note: scales are different and dams can facilitate MAR

MAR as % global MAR capacity Vs GW use as % global GW use

	Average annual MAR volume in the decade centred on date $(Mm^3\!/y)$						Annual Groundwate r use ¹ (Mm3/y)	MAR as % ground- water use	MAR as % gobal capacity	MAR vol growth earliest year to 2015 %pa	Ground- water use as % global use
Country/Region	1965	1975	1985	1995	2005	2015*	2010	2015	2015	- 2015	2010
Austria						56	1,120	5.0%	0.6%		0.11%
Australia	79	144	185	213	257	410	4,960	8.3%	4.1%	3.6%	0.51%
Belgium						2.5	650	0.4%	0.0%		0.07%
China	20	23	23	24	56	106	112,000	0.1%	1.1%	3.6%	11.41%
Croatia			42	48	48	46	600	7.7%	0.5%	0.3%	0.06%
Czech Republic						22	380	5.8%	0.2%		0.04%
Denmark						0.25	650	0.0%	0.0%		0.07%
Finland	<1	30	35	50	55	65	280	23.2%	0.7%	9.3%	0.03%
France	20	21	26	30	31	32	5,710	0.6%	0.3%	1.0%	0.58%
Germany		867	766	875	765	870	3,080	28.2%	8.8%	0.0%	0.31%
Greece						0.3	3,650	0.0%	0.0%		0.37%
Hungary						335	660	50.8%	3.4%		0.07%
India (5 states only)	154	430	706	1020	1739	3070	39,800	7.7%	31.0%	6.6%	4.05%
Israel	87	91	127	132	144	134	1,250	10.7%	1.4%	0.9%	0.13%
Italy	178	294	301	348	391	461	10,400	4.4%	4.7%	2.0%	1.06%
Jordan	4	9	9	13	19	20	640	3.1%	0.2%	3.5%	0.07%
Korea		3.7	12	46	91	146	3,800	3.8%	1.5%	10.4%	0.39%
Latin A merica						311	56,660	0.5%	3.1%		5.77%
Netherlands	181	240	255	241	275	262	1,600	16.4%	2.6%	0.8%	0.16%
Oman	0	0	0	б	?	84	840	10.0%	0.8%	9.9%	0.09%
Poland						143	2,590	5.5%	1.4%		0.26%
Portugal						9	6,290	0.1%	0.1%		0.64%
Qatar	<1	<1	<1	<1	37	44	260	16.9%	0.4%	8.4%	0.03%
Romania						7.4	630	1.2%	0.1%		0.06%
Serbia & Montenegro						9.5	580	1.6%	0.1%		0.06%
Slovakia						176	360	48.9%	1.8%		0.04%
Slovenia						9.5	190	5.0%	0.1%		0.02%
South East Asia	<1	<1	<1	<1	<1	<1	29,270	0.0%	0.0%		2.98%
Southern A frica	1	2	6	6	7	10	4,500	0.2%	0.1%	5.1%	0.46%
Spain ³	3	8	12	60	350	380	5,700	6.7%	3.8%	10.9%	0.58%
Sweden						44	350	12.6%	0.4%		0.04%
Switzerland						100	790	12.7%	1.0%		0.08%
UK	0	0	0	5	5	5	2,160	0.2%	0.1%		0.22%
USA	243	423	703	1128	1962	2532	112,000	2.3%	25.6%	5.1%	11.41%
Total	970	2,585	3,207	4,244	6,231	9,903	414,400	2.4%	100.0%	5.1%	42.2%
Global groundwater use						9,903	982,000	1.0%	100.070	5.170	12.270

Global MAR history

- MAR 10 km³
- Groundwater use 1000 km³
- MAR 1% GW use
- MAR growth 5%pa 0.5 km³/y
- GW Use growth 50 km³/y

MAR in perspective

• Natural recharge 12,000

- Groundwater use 982
- Groundwater depletion 145
- Managed aquifer recharge 10

) (Margat 2008)

(Margat & van der Gun 2013)

(Konikow 2011) (18% of gw use)

- (Dillon et al in prep) (1% of gw use)
- Seawater desalination 20 (UNESCO 2008)

km³/yr

• Turnover of dams 4-6,000

(Pacific Institute 2003)

Progress in Research and Practice

Tools have improved out of sight..

- Computers and modelling, geostatistics, spreadsheets,
- Materials well casing, screens, valves, pumps, drilling eg vibrocore
- Water treatment activated carbon, ozonation, reverse osmosis, membrane bioreactor, deoxygenation
- Logging geophysics- down hole, surface, airborne, down hole flow logging
- Monitoring and analysis trace organics, viruses (PCR), BDOC (biodegradable dissolved organic carbon), particle size distributions, isotope analyses C, N, S, O, H etc
- Pressure transducers, probes, flow meters, loggers, SCADA control systems
- Risk assessment methodology

enabling greater scientific insight on and management of ..

- Hydraulics, clogging, recovery efficiency
- Fate of constituents
- Geochemistry
- Microbial ecology

ISMAR publications

Date	ISMAR	Location	No. of papers	Procs or Special Issues *	Reference
1988	ARG1	Anaheim		В	Johnson A.I. (ed). (1988)
1994	ARG2	Orlando	84	В	Johnson A.I., Pyne, R.D.G. (eds.). (1994)
1998	TISAR	Amsterdam	83	В	Peters, J. et al (eds) (1998)
2002	ISAR4	Adelaide	91	В	Dillon P.J. (ed). (2002)
2005	ISMAR5	Berlin	133	eB	Fritz B. et al (eds) (2005)
2007	ISMAR6	Phoenix	124	В	Fox P. (ed). (2007)
2010	ISMAR7	Abu Dhabi	115	eB	Herrman R. et al (eds). (2010)
2013	ISMAR8	Beijing	122	SIJ- 17	Zhao, Xuan and Wang, Weiping (eds.) (2015)
	66	"		SIJ-12	Sheng, Zhuping, Zhao, Xuan (eds) (2015)
	66	"		SIJ-14	Megdal S., Dillon P. (eds) (2015)
2016	ISMAR9	Mexico City	88	SIJ-18	Stuyfzand, P. and Hartog, N. (eds) (2017).
	"	66		SIJ-18	Dillon, Pavelic, Wang and Palma Nava (in prep)
A 11			840	B+eB-7,	
All			840	SIJ-79	

* B = book, eB = e-book, SIJ-18 = Special Issue of a Journal with 18 papers

Indicative number of peer reviewed journal papers published in the field of MAR by decade

Years	1970s	1980s	1990s	2000s	2010- 2017
Number of papers	3	5	36	140	319

Results of SCOPUS search Sept 2017 on "managed aquifer recharge", "artificial recharge" or "water banking" in the title of the paper has shown that the number of papers in each successive decade has increased considerably. Papers in earlier years may be under-represented by electronic bibliographic services. (Dillon *et al* in prep)

Information needed to progress MAR

Information

- Citable references on innovative projects
- Measurement of water quantity and quality at MAR sites
- Breakdown of economics of MAR sites
- Global inventory of MAR
- Maps to show potential for MAR
- Communities of practice to share experience

Scientific advances

- Standardised methods to predict clogging
- Standardised validation procedures for pathogen removal
- Improved prediction of contaminant removal and mobilization in aquifers
- Cheaper aquifer characterization and ecosystem indices

Governance

- Implementation of groundwater management plans that recognize role of MAR
- Consistent water quality guidance based on risk management/water safety plans
- Encouragement of water banking for water security in drought, climate change
- Encouragement of conjunctive use of g/w and s/w
- Strengthen IWM in urban areas, incl stormwater, treated waste water
- Link water to energy, food, and land planning to account for multi-sectoral benefits
- Support for community cooperative MAR development and maintenance

Conclusions - the journey so far

The last 60 years has seen a huge growth in MAR based on sound interdisciplinary science.

MAR currently compensates for 5% of global groundwater depletion, and good management would see that percentage rise for two reasons.

MAR reduces net groundwater use by only 1%, and it is a trivial 0.06% in comparison with natural recharge. However its done where it is useful and critically needed.

There are more people to feed and climate variability in many places is reducing natural recharge, increasing evaporation and water use. It would be irresponsible not to consider buffering of storage below ground. Resilient water supplies are fundamental so MAR is no longer exotic, it's a mainstream groundwater management tool and should be used as inducement for demand management, not as a substitute.

In 60 years artificial recharge has transitioned from trial and error to rigorously investigated, and from unmanaged to managed. Soil and aquifers that once were regarded as inert are now seen as bioreactors and aquifer hydrogeochemistry and ecology recognized as important. Monitoring and measurement capabilities have improved, and technology advanced. Success is no longer random, its expected, unless dismissed early in site investigations.

Conclusions - the journey ahead

Trends:

- More water banking for drought and water security
- More use of urban wastewaters, rural flood cropping and diffuse micro-MAR
- Engineered and natural treatment methods to complement soil and aquifer targets
- Community based MAR in alluvial systems with technical support
- Ongoing research on information gaps and synthesis of knowledge

For IAH MAR Commission:

- Continue to promote exchange of information of benefit to water suppliers and users, water resources managers, environmental and health regulators, planners, financial institutions and communities
- Continue to foster interdisciplinary research and sharing between researchers and all stakeholders.
- Dispel myths, and divergent policies in place around the world that are not supported by science, and encourage good practices so that all new MAR operations are sustainable.

International Association of Hydrogeologists Commission on Managing Aquifer Recharge IAH –MAR <u>https://recharge.iah.org/</u>

Aim: Safe, sustainable recharge enhancement

Methods: web site, publications database, email list, conferences, projects, **working groups**, workshops

Outputs:

- UNESCO publications eg 'Strategies to enhance recharge in arid and semi-arid areas', '...managing aquifer recharge, discharge and storage equilibrium', 3Rs-Managing the groundwater buffer
- Working groups -Monograph on clogging (Russell Martin (ed)), governance & economics (J Water special issue 2015), MAR for development (workshop at ISMAR9, 2016), International inventory of MAR (with IGRAC and EU), Economics of MAR (Ross & Husnan 2018), 60 year history (Dillon et al in prep), MAR Guidelines (collation on web)
- Symposia BSMAR 16 (San Diego USA Mar 2018) and ISMAR10 (Madrid 20-24 May 2019),

CoChairs: Peter Dillon, Weiping Wang, Enrique Fernandez Escalante

ISMAR 10

INTERNATIONAL SYMPOSIUM ON MANAGED AQUIFER RECHARGE

hstituto Geológico y Minero de España International Water Resources

www.ismar10.net