Addressing Uncertainty in GSP Development

Thomas Harter
University of California Davis

<u>ThHarter@ucdavis.edu</u>
http://groundwater.ucdavis.edu

The Key Elements of Groundwater Sustainability Plans

Developing a GSP – An Optimization Problem

Healthy Economy

Healthy Environment

Combating Uncertainty: Adaptive Management

1. Conceptualize

- Define initial team
- · Define scope, vision, targets
- Identify critical threats
- · Complete situation analysis

5. Capture and Share Learning

- Document learning
- Share learning
- · Create learning environment

Conservation Measures Partnership Open Standards

2. Plan Actions and Monitoring

- Develop goals, strategies, assumptions, and objectives
- Develop monitoring plan
- Develop operational plan

4. Analyze, Use, Adapt

- · Prepare data for analysis
- Analyze results
- · Adapt strategic plan

3. Implement Actions and Monitoring

- Develop work plan and timeline
- · Develop and refine budget
- Implement plans

Wikipedia

Performance Measures and GSP Implementation

The GSA world of uncertainty

Uncertainty: Hydrologic Conceptual Models

Uncertainty: Water Budget

Uncertainty: Groundwater Model Parameters

- Hydraulic conductivity
- Specific yield
- Elastic storage
- Inelastic storage
- Preconsolidation head

Uncertainty: Groundwater Model Parameters

CERTAINTY: Principles of Groundwater Flow

• Mass balance:

Inflow - Outflow = Change in Storage

Conservation of Momentum:

Darcy's Law: Flux = Hydraulic Conductivity x Hydraulic Gradient

Conservation of Momentum AND Mass Balance

=> groundwater flow equation:

$$\frac{\partial}{\partial x} \Bigg(K_{xx} \frac{\partial h}{\partial x} \Bigg) + \frac{\partial}{\partial y} \Bigg(K_{yy} \frac{\partial h}{\partial y} \Bigg) + \frac{\partial}{\partial z} \Bigg(K_{zz} \frac{\partial h}{\partial z} \Bigg) + W = S_s \frac{\partial h}{\partial t}$$

subject to initial conditions and boundary conditions

Uncertainty: Modeling Boundary Conditions & Integrated Hydrologic Modeling

Uncertainty: Modeling Boundary Conditions

Heat of

precipitation

from: USGS GSFLOW Manual

Incoming

shortwave

radiation

Longwave radiation Longwave

radiation

from air

Latent and

sensible heat

Longwave radiation

Uncertainty: Modeling Boundary Conditions

from: USGS FARM Package Manual

Uncertainty: Data for Modeling Boundary Conditions

Model Comparison of ET Estimates in the Sacramento-San Joaquin Delta (Center for Watershed Sciences, UC Davis, 2018) https://californiawaterblog.com/2018/04/23/modeling-measuring-and-comparing-crop-evapotranspiration-in-the-delta/ Uncertainty: Data for Modeling Boundary Conditions

Climate Variability

Uncertainty: Data for Modeling Boundary Conditions **Climate Change**

Note: Percentage of precipitation falling as rain over the 33 main water-supply watersheds of the State is shown for water years ending 1949 through 2012 (Oct. 1948-Sept. 2012), using Western Region Climate Center historic precipitation and freezing level re-analysis (http://www.wrcc.dri.edu).

Uncertainty: Data for Modeling Boundary Conditions Landuse Change

Harter et al., CDFA FREP Final Report, 2017

Uncertainty: Data for Modeling Boundary Conditions **Groundwater Pumping**

Uncertainty in Hydrology = Uncertainty in the Scientific/Technical Assessment

"Essentially, all models are wrong, but some are useful."

Address Uncertainty in Concepts/Data/Models: Using Models

Statistical Analysis:

 Using sensitivity analysis / calibration tools / Monte Carlo analysis

Results:

- most likely outcome
- lower and upper bound of outcomes

How sensitive are model results to knowledge uncertainty? => guidelines for future measurement

Flow observations clearly dominated the sensitivity analysis and this can results in possible problems with the future calibration

Building Confidence: Model Results vs. Observed Data

Simulating Scenarios: Focus on the Difference to BAU

Investigate Impact of Alternative Management Practices

Address Uncertainty in Monitoring Needs: Using Models

Statistical Analysis:

 Using calibration tools / sensitivity analysis

Results:

- Identify most important data to measure
- Identify most important locations and time points to measure

The GSA world of uncertainty

Sustainable Management Criteria: Where do we land?

Uncertainty: Project Cost, Funding, Planning, Implementation

from: Ted Johnson, WRD 2013

from: George Sakkestad, Mercury News, 2015

Uncertainty: Project Cost, Funding, Planning, Implementation

from: Sacramento Bee

from: Conservation Corridor

Uncertainty: Controlling Demand

Uncertainty: Governance

"The only way to know how a complex system will behave-after you modify it-is to modify it and see how it behaves."

