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The Key Elements of Groundwater Sustainability Plans




Developing a GSP — An Optimization Problem
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Adopted from: Marylou Shockley, CSU Monterey Bay



Combating Uncertainty: Adaptive Management

1. Conceptualize

Define initial team

Define scope, vision, targets
Identify critical threats
Complete situation analysis

My

5. Capture and Share
Learning .
e Document learning Conservatlon
» Share learning Measures
¢ Create learning environment Pa rtnership
Open Standards

4. Analyze, Use, 3.Im

Adapt
» Prepare data for analysis

« Analyze results
+ Adapt strategic plan

(2. Plan Actions and A

Monitoring

* Develop goals, strategies,
assumptions, and objectives
« Develop monitoring plan

and Monitoring

« Develop work plan and
timeline

e Develop and refine budget

* Implement plans

1 + Develop operational plan

plement Actions
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Performance Measures and GSP Implementation

- -#‘-E _PajaroiValley

HRESHOLD (S) ‘& Water Management Agency

I
N
D
I
C
A
T
O
R
S
=

Future Management Impact | ok

Uncertain



The GSA world of uncertainty




Uncertainty: Hydrologic Conceptual Models
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Uncertainty: Water Budget
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from: Ca.DWR, Draft BMP Sustainability Criteria



Uncertainty: Water Budget
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Uncertainty: Groundwater Model Parameters

wes: F52, Dl 15 2004 63 IBSWIEW LW ISE] we.usgs guw.

e Hydraulic
conductivity

e Specificyield
e Elastic storage

* |nelastic
storage

* Pre-

consolidation
head

Y- dRai ~ 88 3lnem . -| Haddwees 85 sditarp ook 00E0E0E_C hucke_Faremed_30

s [ AFeEs




Uncertainty: Groundwater Model Parameters
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CERTAINTY: Principles of Groundwater Flow

® Mass balance:

Inflow - Outflow = Change in Storage

® Conservation of Momentum:

Darcy’s Law:  Flux = Hydraulic Conductivity x Hydraulic Gradient

® (Conservation of Momentum AND Mass Balance

=> groundwater flow equation:

ox\" T ox) eyl Voy) oz\ oz é‘t

subject to initial conditions and boundary conditions



Uncertainty: Modeling Boundary Conditions &
Integrated Hydrologic Modeling
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Uncertainty: Modeling I
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— MNon-routed surface watar (FMP internal)

Routed surface water [Link to SFR package)
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Uncertainty: Modeling Boundary Conditions
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Uncertainty: Data for Modeling Boundary Conditions
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Figure 1: Sacramento Valley and 5an Joaquin Valley Water Year Types — 1906 to 2014

Sacramento Valley Water Year Type San Joaquin Valley Water Year Type

Uncertainty: Data for
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Uncertainty: Data for Modeling Boundary Conditions
Climate Change

Rain as Percentage of Total Precipitation Location of 33 watersheds sampled
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Note: Percentage of precipitation falling as rain over the 33 main water-supply watersheds of the State is shown for water years ending 1949
through 2012 (Oct. 1948-Sept. 2012), using Western Region Climate Center historic precipitation and freezing level re-analysis (hitp://www wrcc.
dri_.edu).



Uncertainty: Data for Modeling Boundary Conditions

Landuse Change

1960 Landuse 2005 Landuse

-
[ Arfaifa
- Barren

l:' Citrus and Subtropical
- Corn, Sorghum, Sudan
l:] Decidious Fruits and Nuts

-
[ Alfaifa
- Barren

D Citrus and Subtropical
- Corn, Sorghum, Sudan
[ Decidious Fruits and Nuts

|:| Field Crops l:] Field Crops

I:I Grain I:] Grain

|:| Native Vegetation, Grassland, and Pasture l:] Native Vegetation, Grassland, and Pasture
[ Rice [ Rice

- Semiagricultural and Incidental to Agriculture
- Truck, Nursery, and Berry Crops

- Semiagricultural and Incidental to Agriculture
- Truck, Nursery, and Berry Crops

- Urban - Urban
- Vineyards - Vineyards
Wat Water
\- fater P \- F,

80 Mi
|

1
30 60 120 Km

Harter et al., CDFA FREP Final Report, 2017

>

0 30 60 120 Km




Uncertainty: Data for Modeling Boundary Conditions
Groundwater Pumping
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Uncertainty in Hydrology =
Uncertainty in the Scientific/Technical Assessment
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“Essentially, all models are
wrong, but some are useful.”

George E. P. Box, 2011 &

Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, NY.



Address Uncertainty in Concepts/Data/Models: Using Models
Resenvor . |

Statistical Analysis:

e Using sensitivity analysis /
calibration tools / Monte
Carlo analysis

Results:

e distribution of outcomes <~
uncertainty about outcome

 most likely outcome

 Jlower and upper bound of
outcomes




How sensitive are model results to knowledge uncertainty?

Normalised Composite Scaled

Large value identifies important parameters

Sensitivities

=> guidelines for future measurement
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Flow observations clearly dominated the sensitivity analysis and this can results
in possible problems with the future calibration



Building Confidence: Model Results vs. Observed Data
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Simulating Scenarios: Focus on the Difference to BAU
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Investigate Impact of Alternative Management Practices

50 | | |

management alternative 1

management alternative 2 \
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Relative change in streamflow
due to alternative future
groundwater management scenarios
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Address Uncertainty in Monitoring Needs: Using Models
|

Resenioir

Statistical Analysis:

e Using calibration tools /
sensitivity analysis

Results:

e |dentify most important data
to measure

e |dentify most important
locations and time points to
measure




The GSA world of uncertainty

hydrology
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Sustainable Management Criteria: Where do we land?

| Sustainability Indicators
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[generalized examples of what to monitor] modified from Ca DWR 2016



Uncertainty: Project Cost, Funding, PIannmg, Implementatlon
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Uncertainty: Project Cost, Funding, Planning, Implementation

..n*P-wmsamammra BEE o135/ -
() iy T T
i g3 R S S (R N
" % . e S0 %—ﬂw
ik v b AICALA o

=

DON'T WORRY..,
WE'VE WORKED
OUT A LEGISLATIVE
SOLUTION 7

from: Sacramento Bee

—
LARRY'S ACUTE SENSE OF ANBRENESS
SERNED Hwy well...

from: Conservation Corridor



Uncertainty: Controlling Demand




Uncertainty: Governance




“The only way to know
how a complex system will
behave-after you modify
It-is to modify it and see
how it behaves.”

George E. P. Box, 2011 &

Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, NY.



Increased
Sustainability

Monitoring

Projects and
Management

Actions Establish goals

& objectives

Planning
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current objectives &
_______ proposed action(s)

Outreach )

Analyze,

Select action(s):
research, pilot, or
or full-scale

Ca DWR BMP Framework 2017

Design & Design &
implement implementation
maonitoring plan (s)

Combating Uncertainty:
Smart Adaptive Management Do . Ca DFW
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