In Situ Chemical Oxidation of Dioxane Using Slow-Release Chemical Oxidant Candles

GRA Emerging Contaminants Symposium

Patrick Evans (CDM Smith)
Pamela Dugan (Carus)
Michelle Crimi (Clarkson
University)

February 5, 2014

CDM Smith

Problem Statement

- Dioxane is a challenging contaminant:
 - More widespread than previously thought
 - Large and dilute plumes
 - Increased cancer slope factor published in 2010
- Current approaches don't work well or are expensive:
 - Pump and treat / advanced oxidation processes
 - Biodegradation (Evans, Parales, & Parales 2007)

CB1190

- Pseudonocardia dioxanivorans – an antinomycte
- First isolate capable of growth on dioxane (Parales et al., 1994)
- > 50% dioxane converted to
 CO₂
- Specific activity 0.33 µg/mg/min
- Doubling time 30 hours
- Also grows on tetrahydrofuran

Possible Solution

- Slow release oxidants are a solution
- Possible configurations
 - Permeable reactive barrier (PRB)
 - Funnel and gate (F&G)
 - Grid
- Oxidants
 - Permanganate
 - Unactivated persulfate
 - Activated persulfate

Technology Description

 Solid product formed as <u>candle</u>, chipped for barrier applications, or further processed for hydrofracturing into low permeability media/fractured bedrock

- 1.35- or 2.5-inch diameter
- 18 inches long

Passive Treatment with In Situ Reactive Zones / Barriers

Technology / Methodology Description

Dioxane Destruction with Permanganate and Unactivated Persulfate

Both permanganate and unactivated persulfate oxidize dioxane at various sites

Dioxane Oxidation with Permanganate

Dioxane Oxidation with Unactivated Persulfate

Laboratory Oxidant Kinetics Results

Comparison of TCE and Dioxane Oxidation

Kinetic Experiment Summary (Nanopure water, no soil)

Oxidant	Contaminant	Calculated Second Order Rate Constant (M ⁻¹ s ⁻¹)
Persulfate	Dioxane	1.26 E-03
Persulfate	Dioxane and TCE	1.90E-03
Permanganate	Dioxane	3.25E-05

- Oxidation of dioxane with persulfate is about 30X faster than with permanganate.
- Potential enhancement of dioxane oxidation by TCE?
- In progress Testing with site groundwater and soil

Dioxane Mineralization with Permanganate

Column Results for Dioxane Removal

Persulfate SR cylinder 97%-100%

 1,500 ppm unactivated persulfate 93%-100%

Oxidant Release Kinetics and Modeling

Permanganate Mini-Cylinder (80% w/w) running for ~6 months

Results – TCE Removal in 1D Columns

TCE mass removal 86%-100% over 170 days or > 470 PVs

ESTCP Demonstration: Naval Air Station North Island

Engineering Design Tool

Engineering Design Tool

aminant concentrations

Conclusions

- Dioxane and other contaminants often create large dilute plumes
- Unactivated persulfate and permanganate have potential for treatment
- Slow-release chemical oxidant candles can be used for plume treatment

- Various configurations include permeable reactive barriers, funnel and gate, and grid
- An ESTCP field demonstration will yield practical cost and performance data

Thank You!

Pat Evans evanspj@cdmsmith.com (206) 351-0228

