Stable Isotope Probing Demonstrates In Situ Biodegradation of 1,4-Dioxane

Dora Ogles (Microbial Insights)
James Hatton (CH2MHILL)

1,4-Dioxane Sources

Stabilizer for chlorinated solvents (1,1,1-TCA)

Solvent for paper, cotton, and textile processing

Inadvertent byproduct in surfactant production

Physical/Chemical Properties

- Probable human carcinogen (0.35 μg/L)
- Miscible with water
- Low sorption
- Relatively low volatilization

Department of Public Health, Washtenaw County, Michigan

Biodegradation

- Aerobic Growth Supporting
 - Cordyceps sinensis (fungus)
 - *Mycobacterium* sp. PH-06
 - Pseudonocardia dioxanivorans CB1190

(Mahendra & Alvarez-Cohen, IJSEM, 2005)

Biodegradation

- Aerobic Growth Supporting
- Aerobic Co-oxidation
 - Ring hydroxylating toluene monoxygenases (RMO,RDEG,PHE)
 - Soluble methane monooxygenase (sMMO)
 - Propane, alkenes, tetrahydrofuran (THF), etc.

Pathway

Mahendra et al. 2007 ES&T 41(21): 7330-7336

Stable Isotope Probing (SIP)

- Specially produced "heavy" compounds which are composed of 99% ¹³C
 - Similar characteristics as ¹²C contaminant
 - Similar environmental behavior
- Quantify the ¹³C "tracer" in end-products of degradation (biomass and CO₂)

How do Bio-Traps work?

Properties of Bio-Sep Beads

- 25% Nomex & 75% PAC
- 3-4 mm in diameter
- 74% porosity
- 600 m² of surface area/g
- Heat sterilized 300°C

Overview of SIP Approach

Bio-Trap with ¹³C-Dioxane loaded beads Beads analyzed following deployment

¹³C labeled Dioxane

Bio-Trap SIP Analysis

Residual ¹³C-Compound

Contaminant Loss

¹³C/¹²C Dissolved Inorganic Carbon (DIC)

Mineralization

¹³C/¹²C of Biomarkers

PLFA DNA RNA

Biomass

Site Management Options

- Monitored Natural Attenuation (MNA)
- Biostimulation (BioStim)
 - Butanol addition
 - Kelley et al. (2001)
 - Bioaugmented phytoremediation
 - Butanol addition stimulated growth of CB1190

In Situ Microcosm Study – MNA Unit Bio-Trap MNA**GEO** BioStim

In Situ Microcosm - BioStim Unit Supplier *шиништиштиштиштишти* MNA Bio-Trap **GEO** BioStim Supplier

¹³C Incorporation into Biomass

Unit of measure

Amount of 13 C relative to 12 C is expressed by the δ^{13} C notation

$$\delta^{13}C \left[\%_{0}\right] = \left(\frac{\binom{13}{C}/\binom{12}{C}}{\binom{13}{C}/\binom{12}{C}}\right)_{\text{Standard}} - 1 \cdot 1000$$

The standard is a specific carbon-containing mineral from a specific location: Pee Dee Belimnite (PDB)

Units of δ^{13} C are ‰ or "per mill"

¹³C Incorporation into DIC

¹³C Incorporation into Biomass

Co-oxidation Potential

Conclusions – MNA Units qPCR

Moderate abundances of genes encoding oxygenases capable of co-oxidation of dioxane

Incorporation into Biomass

Detection of ¹³C enriched PLFA demonstrated that dioxane biodegradation occurred within the passive microbial sampler

Incorporation into DIC

Although low, ¹³C enriched DIC was detected indicating dioxane mineralization had occurred

In Situ Microcosm - BioStim Unit Supplier MNA Bio-Trap **GEO** BioStim Supplier

¹³C PLFA – MNA vs BioStim

¹³C PLFA – MNA vs BioStim

¹³C Incorporation into DIC

Co-oxidation Potential

Conclusions – BioStim Units

qPCR

Confirmed potential for co-oxidation

Stable Isotope Probing

Demonstrated that ¹³C dioxane biodegradation and mineralization occurred in situ

BioStimulation (butanol addition)

Overall results did not conclusively demonstrate enhanced biodegradation vs MNA

Conclusions

 Dioxane biodegradation occurred under existing site conditions at both locations

 Bacteria harboring oxygenase genes capable of dioxane co-oxidation were present

Butanol addition may not have appreciably enhanced dioxane biodegradation

SIP Advantages

 Relatively conclusive evidence of contaminant biodegradation in situ

 No knowledge of biodegradation pathway or organisms responsible is needed.

Applicable to a wide variety of common contaminants

SIP Limitations

 Greater contaminant concentrations in sampler

Potential desorption (dioxane)

 Some ¹³C compounds can be expensive to synthesize

SIP Limitations

 Generally not appropriate for compounds used as electron acceptors

SIP-PLFA cannot identify degraders

Questions???