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Why multilevel groundwater
characterization & monitoring?

* Solute concentrations, hydraulic
properties, and head distribution are
spatially variable in the subsurface,
particularly in the vertical dimension



Conceptual Model for Dissolved Plumes Emanating
from DNAPL Source Zones
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Abstract

Discrete-depth sampling of morgame groundwater chemistry is essential for a varety of site
characterzation activities. Although the mobility and rmapid sampling capabilities of direct-push
techniques have led to ther widespread use for evaluating the distribution of organic
contammants, complementary methods for the characterization of spatial vanations in
geochemical conditions have not been developed. In this study, a direct-push-based approach
for ligh-resolution morganic chemical profiling was developed at a site where sharp chemical
contrasts and iron-reducing condiions had previously been observed. Existing multilevel
samplers (MLSs) that span a finmg-upward alluvial sequence were used for companson with the
direct-push profiling. Chemical profiles obtained with a conventional direct-push exposed-screen
sampler differed from those obtamed with an adjacent MLS because of sampler reactivity and
mixing with water from previous sampling levels. The sampler was modified by replacing steel
sampling components with stamless-steel and heat-treated parts, and adding an adapter that
prevents mixing. Profiles obtamed with the modified approach were in excellent agreement with
those obtained from an adjacent MLS for all constituents and parameters monitored (Cl, NOs, Fe,
Mn, DO, ORP, specific conductance and pH). Interpretations of site redox conditions based on
field-measured parameters were supported by laboratory analysis of dissolved Fe. The discrete-
depth capability of this approach allows inorganic chemical vanations to be described at a level
of detail that has rarely been possible. When combined with the mobility afforded by direct-push
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Temporal Changes in the Vertical Distribution
of Flow and Chloride in Deep Wells

by John A. Izbicki', Allen H. Christensen®, Mark W. New house?, Gregory A. Smith?, and Randall T. Hanson?

Abstract
The combination of flowmeter and depth-dependent water-quality data was used 10 evaluate the quantity and
source of high-chloride water yielded from different depths to eight production wells in the Pleasam Valley area of

southern California. The wells were screened from 117 o0 437 m below land surface , and in most cases, flow from Resistivity, Depth=dependent
the aguifer into the wells was not uniformly distibuted throughout the well screen. Wells having as little as & m of im o= cl'luri;a. in Huid rB!i!li'l'iW.
screen in the overying upper aquifer system yielded as much as 50% of their water from the upper system during muliers Aqguiters milligrams per Biter in chm=meters
drought periods, while the deeper pants of the well screens vielded 15% or less of the total yield of the wells. Mixing &ham plr=ti
of water within wells during pumping degraded hi gher-quality water with poorer-quality water from deeper depths, 0 15 50 0 200 400 60O @ W m
and in some cases with poorer-quality water from the overd ving upper aquifer system. Changes in the mixture of L o — [ ] [rrrri] J F T 3 Err7rr1]
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Figure 5 Depth-dependent chloride-concentration data, Auid-resistivity data, and Muid-temperatore data from well 2MN/21W-

MG (PV-2), Pleasant Valley, California.




What about
hydraulic

head?

(Source: Meyer et al., 2014).
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Should we expect variations in water chemistry
and hydraulic head in California oil and gas fields?

Stimulated well Existing oil well

<3,000 mg/L TDS

l

3,000 - 10,000
mg/L TDS

>10,000 mg/L TDS

B}, I . Compaosite
il and Gas Reservoir 2xADSY from

multi-stage
stimulations in
vertical well

Mot To Scale

Figure 6.4. A view showing one monitoring location with the installation of three conventional
groundwater monitoring wells or one multi-level system well. Graphics by Sascha Madrid.



Issues and biases with single-interval, long-
screened wells

Blended concentrations and heads

Measured concentrations in samples
a function of flux into well

Dilution of some target compounds
below MDL

Incongruent geochemical data (e.g.,
redox-sensitive compounds, GW

age)

Bias associated with ambient vertical
flow in well
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F'lurrlm that will
not enter the well

Leng screen
moanitaring well

Figure 5. Flow Through a Long Screen Monitoring Well In a Thick, Unconfined Aquifer

(Source: Mcllvride et al. 1988).




Implications of Observed and Simulated Ambient
Flow in Monitoring Wells

by Alper Elei', Fred J. Molz [T, and William R. Waldrop®

Abstract

A recent paper by Hutchins and Acree (260 has called sttention to ground walder spmipling bins doe (o ambient {natural gra-
dieni-inducel) fMows in monitoring wells. Data collected with borehole flowmeters have shown that such ambient Aows ane
uhiguitons in hath confinded pmd onconlined squifers. Developed herein b a detalled three-dinmensional midel of fow and trans-
port in the vicinity of o fully penetruting menitsring well, The model was used bo simulate a measured ambient flow distribution
around & test well in & heteropeneons wquifer ot the Savanneh River Site (SH5) near Adken, South Carolina, Simulated ambdent
Mows agreed well with measurements. Natoral flow was opward, so waler entered the well mainly through bigh K layers in the
lowoer portion of the aquifer amd exlied throoagh slmilar layers inthe upper portion. The maximem epward discharge in Uhe well
was ahout [L28 Lémin, which implied an induced exchange of 12 m/month from the Boiiom half of the pquifer to the uppeer hadf,
Traecer transport simolations then ilustrated how a contaminant hecated inftially b a lower porthon of the squifer was conting-
ously transported into the upper portion sl diluted throwghaut the entice well by in-fowing water. Even after full purging or
inbcrapirging, samples from soch a well will yield misleading and ambigusus dats concerning selute cmeentrations, lecation of
a confwminuenl source, and plume geamelry. For all of these reasois, uwse of long-sereened monitoring wells shoukd be phosed o,
unless an approprinte multilevel samgling device prévents vertical Row.

Bmkgrmmﬂ pivst studies (Musle and Yoosg 1993; Mole et al. 1994; Church and

Conventional moaitoring wells ane often used o obtain infor- Cramsto 1996 Homan e al. 1997 Huiching and Acree 2000
miation aboul ground water chemistry and plume geometry. The  Crisman et al, 20000, For most of the wells listed in Table 1.
pathering of information is accomplished by collecting ground  Whether the well screen penetmied the aquiter fully wis ot doc

srnented The lagt five awlle chrmn in Tahle 1 e welecbad Froom

B L T T B T B T R - PP e

(Source: Elci, A., F. Molz and W. R. Waldrop (2001). "Implications of observed and simulated ambient flow in
monitoring wells." Ground Water 39(6): 853-862.




Options for depth-discrete groundwater
monitoring

(a) Nested Well (b) Well Cluster (C) Engineered Multilevel
System (MLS)

(Source: adapted from Einarson 2006).



A “real” nested well

e
Centralizer (typ.)
=' Casings completely
1 Void space between : encased in
-l casings not sealed H annular seal
. with grout '
L el
" *‘.Eg‘*
1 L
Plan View ayuned

Plan View
(Horizontal slice)

(Horizontal slice)

Not to scale

A) without centralizers; B) with centralizers

Source: Nielsen, 2005 Practical Handbook of Ground-Water Monitoring, Second Edition
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FIGURE 11.10
Design of a centralizer for a three-zone nested well. See text for further discussion.
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Source: Nielsen, 2005 Practical Handbook of Ground-Water Monitoring, Second Edition



There is a resurgence in the
number of nested wells being
installed in the U.S.

* Successful installations have large
sealed intervals

e Same head values measured in
adjacent zones may indicate a
failed seal

* Effective centralizers are very
important but are often an
afterthought. Centralizers should
be considered and specified in the
well design

(Source: Hansen et al. 2002)
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(a) Nested Well (b) Well Cluster (C) Engineered Multilevel
System (MLS)

(Source: adapted from Einarson 2006).
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Engineered multilevel monitoring systems
(MLS)

1. Continuous Multichannel Tubing (CMT™)

http://www.solinst.com/products/multilevel-systems-and-remediation/403-
cmt-multilevel-system/

2. Solinst Waterloo System http://www.solinst.com/products/multilevel-
systems-and-remediation/401-waterloo-multilevel-system/datasheet/

3. Water FLUTe™ http://www.flut.com/index.html

4. Westbay System http://www.novametrixgm.com/groundwater-
monitoring/multilevel-well-system/westbay-system-multilevel-groundwater-
monitoring




Installation options

Multi-screened
Open Hole Backfilling Cased Well Perforated Well

(Source: provided by Westbay Instruments,
A Division of Nova Metrix Ground Monitoring (Canada) Ltd.).



Installation options v

Multi-screened
Open Hole Backfilling Cased Well Perforated Well

(Source: provided by Westbay Instruments,
A Division of Nova Metrix Ground Monitoring (Canada) Ltd.).



Benefits of installing MLS in multi-screened
PVC or steel wells

* Familiar technology

* Smooth interior (high-quality seals; low risk
of failure during installation of MLS)

e Standard well development (mud rotary no
issue)

e Standard geophysical logging
e Hydraulic testing
e Can verify integrity of seals

* Removable/ease of decommissioning
(simplifies permitting)



Key MLS advantages

* Head and hydrochemical data from multiple
depths in a single borehole

* Only one pipe/tube in the borehole.
Enhances reliability of seals

» Total project costs lower

e Small system volume results in more
accurate head measurements

* Small footprint
* Reduced permitting costs
* Seals can be verified



MLS disadvantages

* Fewer options for sampling; collecting large
volumes of water can be time consuming

e Specialized training required

* Can be more difficult to decommission than
conventional monitoring wells

* Fewer options for hydraulic testing



|II :

Engineered MLS systems are no longer “novel” in
California and can play an important role in Oil &
Gas monitoring

* First system installed in an oil & gas field in Kern County in
1986

e 2,000 MLS systems installed in California in the last 30
years

* More than 200 Westbay wells installed in California, most
in Southern California to depths up to 2,000 feet. (Deepest
Westbay well is 7,000 feet in Decatur, IL)

» Several FLUTe and Westbay wells to ~500 feet at SSFL near
Simi Valley

* 60 Westbay wells installed in Orange County to depths up
to 2,000 feet in the 1990s

» Six Westbay wells installed recently for Mojave Water
Agency

 Many Westbay wells installed at San Gabriel Valley
Superfund sites
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Murray Einarson

Haley & Aldrich

Oakland, CA
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