Managing Complex Sites with High Resolution Site Characterization and Focused Remediation

John Sankey, P.Eng., True Blue Technologies

Dry Cleaner Site

- Ultra-high resolution scanning technology, threedimensional data integration and visualization
- Post injection
- Fort Ord, Monterey Bay
 - Multilevel wells
 - Another client
- South Tacoma Channel Superfund site in Tacoma
 - Rigorous conceptual site model
 - In situ thermal remediation for source
 - Enhanced anaerobic bioremediation for hot spots

BOONE DRY CLEANERS, JACKSON, TN CREDIT AESTUS

- Dry cleaners 1945 to 1977
- Bioremediation injectates 2002
- Soil excavation 2004
- Injectate effectiveness unknown 2008
- Ultra-High Resolution Scan

 2009

Ultra-High Resolution Scan - data acquisition $GeoTrax\ Survey^{\text{TM}}$

GEOTRAX SURVEYTM SCAN LOCATIONS

PRE-SCAN SITE CSM

3D DATA INTEGRATION

GEOTRAX VIZTM

2D DATA INTEGRATION

GEOTRAX VIZTM

PROFILE VIEW - ULTRA-HIGH RESOLUTION CSM

W/ CONFIRMATION DRILLING RESULTS

PLAN VIEW - ULTRA-HIGH RESOLUTION CSM

HORIZONTAL ELEVATION SLICES (GEOTRAX SURVEYTM DATA)

Vadose Zone

Phreatic Zone

Example 3D CSM+

Dry Cleaner CVOC Site

AESTUS GEOTRAX CSM+TM RESULTS BOONE DRY CLEANERS SITE

- Visualization of enhanced bioactivity
- Newly delineated PCE/DNAPL extents
- Plume deeper than thought
- Existing monitoring wells unsatisfactory
- NEXT STEPS EASILY UNDERSTOOD BY ALL INVOLVED

Treatability / Molecular Testing -diverse communities -credit SiREM Lab

% Microbial community

Former Fort Ord, California

Credit USACE, Wood and Westbay

Fort Ord Hydrostratigraphy

Fort Ord Carbon Tetrachloride Plumes

Fort Ord Carbon Tetrachloride Plume Vertical Migration

- Several previously used drinking water wells had been installed with insufficient sanitary seals
- Historical data indicated the presence of CT
- All but one well are now destroyed
- Apparently one or more wells acted as a vertical conduit and led to deeper contamination

Fort Ord Carbon Tetrachloride Plumes

Fort Ord Carbon Tetrachloride Plumes

Fort Ord Carbon Tetrachloride Plume Lower 180-Foot Aquifer - Cross Section

Fort Ord Groundwater Elevations Lower 180-Foot Aquifer - Cross Section

Completion Method -Cased Well

Multi-port System

Operation of Westbay Sampler

Summary

- New CSM allowed the consultant to carry out agreed remediation.
- Data quality superior to standard purge/bail samples
- Cost per port was about half cost per screen
- 12 ports sampled per day <u>versus</u> 2 per day for standard wells

Bonus- Chloride Concentrations

Well 12A Superfund Site, Tacoma, WA

Primary COCs –

1,1,2,2-tetrachloroethane

Tetra- and trichlorethene

Cis and trans dichloroethene

Vinyl chloride

Light non-aqueous phase liquids

Source area -

High and low permeability

Groundwater 33 ft bgs

Goal - 90% reduction

Source Area

Summary of Site Characterization

- 34 soil borings to reduce uncertainty and delineate sources
- 12 locations for vertical profiling
- Depth discrete samples:
 - Groundwater
 - Soil
 - Slug testing
 - Stratigraphy
- Gradient assessment

Vertical Characterization

Combined Remedies – Well 12A

Superfund Site

Final Source Remedy – reduce mass discharge 90%

Multi-technology remedy, including:

Zone	Surface Area (ft²)	VOC Mass (kg)	Discharge to GETS
Excavation Zone	3819	510	NA
Thermal Treatment Zone	13,000	~242	224 g/day (53%)
<i>In Situ</i> Bioremediation Zone	162,000	~462	199 g/day (47%)

Courtesy of CDM Smith, EPA Region 10, Kemron, Seattle USACE

In-Situ Thermal

Remediation (ISTR) Area (high temperature)

2019 c

Source Area - Electrical Resistance Heating

- 71 electrodes-not evenly spaced-3 zones
- Steam stripping
- VR & multi-phase extraction
- 117 days operation
- 9,591 lbs CVOCs and
- 12,709 lbs NAPL removed

Well 12A Superfund Site, Tacoma, WA

Results, CVOCs in Soil Well 12A Superfund Site, Tacoma, WA

Optimize EAB in DNAPL Hotspots

- Heat Enhanced Plume Attenuation- (HEPA®)
- low-energy ERH to increase temperatures to 35-60°C to accelerate EAB within the DNAPL hotspots.
 - Enhance dissolution of DNAPL
 - Enhance biodegradation kinetic rates
 - Enhance abiotic degradation rates

Treatment Zones: Focused remediation was made possible by continued high resolution characterization before and during remedial activities.

